A new proof of existence of positive weak solutions for sublinear Kirchhoff elliptic systems with multiple parameters
From MaRDI portal
Publication:2296258
DOI10.1155/2020/1924085zbMath1440.35103OpenAlexW3001682417MaRDI QIDQ2296258
Bahri Belkacem Cherif, Rafik Guefaifia, S. Alodhaibi, Salah Mahmoud Boulaaras
Publication date: 18 February 2020
Published in: Complexity (Search for Journal in Brave)
Full work available at URL: https://doi.org/10.1155/2020/1924085
Nonlinear elliptic equations (35J60) Second-order elliptic systems (35J47) Positive solutions to PDEs (35B09)
Related Items (2)
Cites Work
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Existence of positive solutions for nonlocal \(p(x)\)-Kirchhoff elliptic systems
- On the existence of a maximal weak solution for a semilinear elliptic equation
- Some general concepts of sub- and supersolutions for nonlinear elliptic problems
- The sub-supersolution method and extremal solutions for quasilinear hemivariational inequalities.
- On an elliptic Kirchhoff-type problem depending on two parameters
- The weak supersolution-subsolution method for second order quasilinear elliptic equations
- Global solvability for the degenerate Kirchhoff equation with real analytic data
- An existence result on positive solutions for a class of \(p\)-Laplacian systems.
- Existence of positive solutions for a class of \((p(x),q(x))\)-Laplacian systems
- Existence of positive solutions to Kirchhoff type problems with zero mass
- Global existence and decay of solutions for a class of viscoelastic Kirchhoff equation
- Existence of positive solutions of nonlocal \(p(x)\)-Kirchhoff evolutionary systems via sub-super solutions concept
- Existence of positive solutions and its asymptotic behavior of \((p(x),q(x))\)-Laplacian parabolic system
- An asymptotic behavior of positive solutions for a new class of elliptic systems involving of \(( p( x) ,q( x) ) \)-Laplacian systems
- Existence Results for an Elliptic Equation of Kirchhoff-Type with Changing Sign Data
- On an elliptic equation of p-Kirchhoff type via variational methods
- Some remarks on non local elliptic and parabolic problems
- Existence of positive weak solutions for a class of Kirrchoff elliptic systems with multiple parameters
- A well-posedness and exponential decay of solutions for a coupled Lamé system with viscoelastic term and logarithmic source terms
- General decay for a class of viscoelastic problem with not necessarily decreasing kernel
- Subsolution-supersolution method in variational inequalities
This page was built for publication: A new proof of existence of positive weak solutions for sublinear Kirchhoff elliptic systems with multiple parameters