Strongly \((\mathscr{X},\mathscr{Y},\mathscr{Z})\)-Gorenstein modules and applications
From MaRDI portal
Publication:2304390
DOI10.1007/S41980-019-00272-WzbMath1432.18011OpenAlexW2969319891MaRDI QIDQ2304390
Publication date: 11 March 2020
Published in: Bulletin of the Iranian Mathematical Society (Search for Journal in Brave)
Full work available at URL: https://doi.org/10.1007/s41980-019-00272-w
(co)resolutionglobal left (right) Gorenstein dimensionstrongly \((\mathscr{X}, \mathscr{Y}, \mathscr{Z})\)-Gorenstein modules
Homological dimension (category-theoretic aspects) (18G20) Relative homological algebra, projective classes (category-theoretic aspects) (18G25)
Cites Work
- Gorenstein categories \(\mathcal G(\mathscr X,\mathscr Y,\mathscr Z)\) and dimensions
- Some remarks on projective generators and injective cogenerators
- \(\mathcal W\)-Gorenstein modules
- The homological theory of quasi-resolving subcategories
- Strongly Gorenstein projective, injective, and flat modules
- Foxby equivalence over associative rings.
- An introduction to homological algebra
- Strongly Gorenstein projective, injective and flat modules.
- Strongly Gorenstein graded modules
- Gorenstein injective and projective modules
- On the finiteness of Gorenstein homological dimensions
- Proper resolutions and Gorenstein categories
- On Strongly Gorenstein FP-Injective Modules
- Strongly W-Gorenstein modules
- Coherent Rings and Gorenstein FP-Injective Modules
- Relative Gorenstein global dimension
- ABSOLUTE, RELATIVE, AND TATE COHOMOLOGY OF MODULES OF FINITE GORENSTEIN DIMENSION
- STRONGLY GORENSTEIN FLAT MODULES
- GORENSTEIN FP-INJECTIVE AND GORENSTEIN FLAT MODULES
- Gorenstein homological dimensions with respect to a semidualizing module
- Gorenstein coresolving categories
- Global Gorenstein dimensions
- Stability of Gorenstein categories
- Covers and Envelopes byV-Gorenstein Modules
- Relative Gorenstein dimensions
This page was built for publication: Strongly \((\mathscr{X},\mathscr{Y},\mathscr{Z})\)-Gorenstein modules and applications