Wavelet-enriched adaptive crystal plasticity finite element model for polycrystalline microstructures
DOI10.1016/j.cma.2017.08.026zbMath1439.74078OpenAlexW2746255435MaRDI QIDQ2310092
Jiahao Cheng, Yan Azdoud, Somnath Ghosh
Publication date: 6 April 2020
Published in: Computer Methods in Applied Mechanics and Engineering (Search for Journal in Brave)
Full work available at URL: https://doi.org/10.1016/j.cma.2017.08.026
finite deformationsecond generation waveletsadaptive enrichmenthierarchical finite elementscrystal plasticity FE
Finite element methods applied to problems in solid mechanics (74S05) Micromechanics of solids (74M25) Large-strain, rate-independent theories of plasticity (including nonlinear plasticity) (74C15) Finite element, Rayleigh-Ritz and Galerkin methods for initial value and initial-boundary value problems involving PDEs (65M60)
Related Items
Cites Work
- Stabilized tetrahedral elements for crystal plasticity finite element analysis overcoming volumetric locking
- Wavelet transformation based multi-time scaling method for crystal plasticity FE simulations under cyclic loading
- Multiscale finite element method for a locally nonperiodic heterogeneous medium
- On an h-type mesh-refinement strategy based on minimization of interpolation errors
- The p- and h-p versions of the finite element method. An overview
- The h-p version of the finite element method. I. The basic approximation results
- The h-p version of the finite element method. II. General results and applications
- Some practical procedures for the solution of nonlinear finite element equations
- On the Gibbs phenomenon. I: Recovering exponential accuracy from the Fourier partial sum of a nonperiodic analytic function
- A posteriori error estimation in finite element analysis
- A constitutive model for hcp materials deforming by slip and twinning: application to magnesium alloy AZ31B.
- A numerical method for computing the overall response of nonlinear composites with complex microstructure
- A multilevel wavelet collocation method for solving partial differential equations in a finite domain
- Effective properties of composite materials with periodic microstructure: A computational approach
- Adaptive wavelet-enriched hierarchical finite element model for polycrystalline microstructures
- Bridging multiple structural scales with a generalized finite element method
- Crystal Plasticity
- Adaptive techniques in the finite element method
- The solution of nonlinear finite element equations
- The hierarchical concept in finite element analysis
- An energy basis for mesh refinement of structural continua
- The Lifting Scheme: A Construction of Second Generation Wavelets
- Finite element formulation for modelling large deformations in elasto‐viscoplastic polycrystals
- A Class of Methods for Solving Nonlinear Simultaneous Equations
- Second-generation wavelet collocation method for the solution of partial differential equations
- A Padé-based algorithm for overcoming the Gibbs phenomenon
- Finite element implementation of a generalised non-local rate-dependent crystallographic formulation for finite strains