Residues formulas for the push-forward in \(K\)-theory, the case of \(\mathbf{G}_2/P\)
From MaRDI portal
Publication:2313411
DOI10.1007/s10801-018-0827-1zbMath1464.14050arXiv1711.05949OpenAlexW2808673462MaRDI QIDQ2313411
Andrzej Weber, Magdalena Zielenkiewicz
Publication date: 19 July 2019
Published in: Journal of Algebraic Combinatorics (Search for Journal in Brave)
Full work available at URL: https://arxiv.org/abs/1711.05949
homogeneous spaces\(K\)-theoryGysin homomorphismequivariant Euler characteristicexceptional group \(\mathbf{G}_2\)pushforward, residue
Homogeneous spaces and generalizations (14M17) Grassmannians, Schubert varieties, flag manifolds (14M15) Equivariant (K)-theory (19L47)
Related Items
Integrable models and \(K\)-theoretic pushforward of Grothendieck classes ⋮ Motivic Chern classes of configuration spaces ⋮ Residues formulas for the push-forward in \(K\)-theory, the case of \(\mathbf{G}_2/P\)
Cites Work
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Thom polynomials of Morin singularities
- Triality, characteristic classes, \(D_4\) and \(G_2\) singularities
- The \(K\)-theory of abelian symplectic quotients
- The moment map and equivariant cohomology
- Lefschetz-Riemann-Roch for singular varieties
- Seminaire de géométrie algébrique du Bois-Marie 1965-66 SGA 5 dirige par A. Grothendieck avec la collaboration de I. Bucur, C. Houzel, L. Illusie, J.-P. Jouanolou et J. -P. Serre. Cohomologie \(\ell\)-adique et fonctions L
- Residue formulas for push-forwards in equivariant cohomology: a symplectic approach
- Localization for nonabelian group actions
- A Littlewood-Richardson rule for the \(K\)-theory of Grassmannians.
- Grothendieck classes of quiver cycles as iterated residues
- Residues formulas for the push-forward in \(K\)-theory, the case of \(\mathbf{G}_2/P\)
- Integration over homogeneous spaces for classical Lie groups using iterated residues at infinity
- The index of elliptic operators. III
- Chern class formulas for $G_{2}$ Schubert loci
- Diagonalizably linearized coherent sheaves
- EQUIVARIANT CHERN CLASSES AND LOCALIZATION THEOREM