On multivariable Zassenhaus formula
From MaRDI portal
Publication:2315536
DOI10.1007/s11464-019-0760-1zbMath1418.22003arXiv1903.03140OpenAlexW3106534222WikidataQ128207295 ScholiaQ128207295MaRDI QIDQ2315536
Yun Gao, Naihuan Jing, Linsong Wang
Publication date: 25 July 2019
Published in: Frontiers of Mathematics in China (Search for Journal in Brave)
Full work available at URL: https://arxiv.org/abs/1903.03140
Derivations, actions of Lie algebras (16W25) Local Lie groups (22E05) Centralizing and normalizing extensions (16S20)
Related Items (1)
Cites Work
- Unnamed Item
- Effective approximation for the semiclassical Schrödinger equation
- Efficient computation of the Zassenhaus formula
- Operator-splitting methods via the Zassenhaus product formula
- Disentangling \(q\)-exponentials: a general approach
- On the convergence of exponential operators-the Zassenhaus formula, BCH formula and systematic approximants
- Explicit description of the Zassenhaus formula
- A note on the Zassenhaus product formula
- On the exponential solution of differential equations for a linear operator
This page was built for publication: On multivariable Zassenhaus formula