Almost universal ternary sums of polygonal numbers
DOI10.1007/s40993-018-0098-xzbMath1456.11041arXiv1607.06573OpenAlexW2962895488WikidataQ114218133 ScholiaQ114218133MaRDI QIDQ2316148
Publication date: 26 July 2019
Published in: Research in Number Theory (Search for Journal in Brave)
Full work available at URL: https://arxiv.org/abs/1607.06573
modular formstheta seriesalmost universal formssums of polygonal numberslattice theory and quadratic spacesspinor genus theoryternary quadratic polynomials
(q)-calculus and related topics (05A30) Sums of squares and representations by other particular quadratic forms (11E25) General ternary and quaternary quadratic forms; forms of more than two variables (11E20) Analytic theory (Epstein zeta functions; relations with automorphic forms and functions) (11E45) Algebraic theory of quadratic forms; Witt groups and rings (11E81) Quadratic forms (reduction theory, extreme forms, etc.) (11H55)
Related Items (2)
Cites Work
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- A characterization of almost universal ternary quadratic polynomials with odd prime power conductor
- Representation of integers by positive ternary quadratic forms and equidistribution of lattice points on ellipsoids
- Klassenzahlen indefiniter quadratischer Formen in drei oder mehr Veränderlichen
- Darstellungsmaße indefiniter quadratischer Formen
- Thetareihen positiv definiter quadratischer Formen
- Hyperbolic distribution problems and half-integral weight Maass forms
- Darstellung durch Spinorgeschlechter ternärer quadratischer Formen
- Spinor norms of local integral rotations. I
- Spinor norms of local autometries of generalized quadratic lattices
- Strong approximation for certain quadric fibrations with compact fibers
- On modular forms of half integral weight
- Über die analytische Theorie der quadratischen Formen
- On almost universal mixed sums of squares and triangular numbers
- Darstellungsmaße von Spinorgeschlechtern ternärer quadratischer Formen.
- Almost universal ternary sums of triangular numbers
- Every Number is Expressible as the Sum of How Many Polygonal Numbers?
- Primitive Representations by Spinor Genera of Ternary Quadratic Forms
- Inhomogeneous quadratic forms and triangular numbers
- Representations of integral quadratic polynomials
- On the theory of quadratic forms
This page was built for publication: Almost universal ternary sums of polygonal numbers