Quantitative \(K\)-theory and the Künneth formula for operator algebras
From MaRDI portal
Publication:2316801
DOI10.1016/j.jfa.2019.01.009zbMath1475.19004arXiv1608.02725OpenAlexW2626337597MaRDI QIDQ2316801
Hervé Oyono-Oyono, Guo-Liang Yu
Publication date: 7 August 2019
Published in: Journal of Functional Analysis (Search for Journal in Brave)
Full work available at URL: https://arxiv.org/abs/1608.02725
(K)-theory and operator algebras (including cyclic theory) (46L80) Exotic index theories on manifolds (58J22) Kasparov theory ((KK)-theory) (19K35)
Related Items
Quantitative \(K\)-theory for Banach algebras, Groupoids decomposition, propagation and operator \(K\)-theory, Approximate ideal structures and \(K\)-theory, Dynamical complexity and K-theory of Lp operator crossed products, Persistence approximation property for maximal Roe algebras, \(L^p\) coarse Baum-Connes conjecture and \(K\)-theory for \(L^p\) Roe algebras, Going-down functors and the Künneth formula for crossed products by étale groupoids
Cites Work
- Unnamed Item
- On quantitative operator \(K\)-theory
- Equivariant KK-theory and the Novikov conjecture
- The Novikov conjecture for groups with finite asymptotic dimension
- Topological methods for C*-algebras. II: Geometric resolutions and the Kuenneth formula
- Baum-Connes conjecture and group actions on trees
- Counterexamples to the Baum-Connes conjecture
- Controlled \(K\)-theory for groupoids \& applications to coarse geometry
- Universal spaces for asymptotic dimension
- Going-down functors, the Künneth formula, and the Baum-Connes conjecture
- Geometrization of the Strong Novikov Conjecture for residually finite groups
- Amenable actions and exactness for discrete groups
- Persistence approximation property and controlled operator K-theory
- K-THÉORIE BIVARIANTE POUR LES ALGÈBRES DE BANACH, GROUPOÏDES ET CONJECTURE DE BAUM–CONNES. AVEC UN APPENDICE D’HERVÉ OYONO-OYONO