\(m\)-quasi-Einstein metric and contact geometry
From MaRDI portal
Publication:2317590
DOI10.1007/s13398-019-00642-3zbMath1421.53048OpenAlexW2914345475WikidataQ128423821 ScholiaQ128423821MaRDI QIDQ2317590
Publication date: 12 August 2019
Published in: Revista de la Real Academia de Ciencias Exactas, Físicas y Naturales. Serie A: Matemáticas. RACSAM (Search for Journal in Brave)
Full work available at URL: https://doi.org/10.1007/s13398-019-00642-3
Ricci soliton\(m\)-quasi-Einstein metricgradient Ricci solitoncontact metric manifold\(K\)-contact manifold
Special Riemannian manifolds (Einstein, Sasakian, etc.) (53C25) General geometric structures on manifolds (almost complex, almost product structures, etc.) (53C15) Contact manifolds (general theory) (53D10)
Related Items
Unnamed Item ⋮ On m-quasi-Einstein spacetimes ⋮ A note on gradient solitons on para-Kenmotsu manifolds ⋮ Unnamed Item ⋮ On a class of generalized recurrent $(k,\mu)$-contact metric manifolds ⋮ Gradient Yamabe and gradient \(m\)-quasi Einstein metrics on three-dimensional cosymplectic manifolds ⋮ On non-gradient \((m,\rho )\)-quasi-Einstein contact metric manifolds ⋮ Quasi-Einstein structures and almost cosymplectic manifolds ⋮ \(m\)-quasi-Einstein metrics satisfying certain conditions on the potential vector field
Cites Work
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- On noncompact \(\tau \)-quasi-Einstein metrics
- On generalized \(m\)-quasi-Einstein manifolds with constant scalar curvature
- Triviality of compact \(m\)-quasi-Einstein manifolds
- Rigidity of quasi-Einstein metrics
- The nonexistence of quasi-Einstein metrics
- Characterizations and integral formulae for generalized \(m\)-quasi-Einstein metrics
- On \(\eta\)-Einstein Sasakian geometry
- Contact metric manifolds with \(\eta \)-parallel torsion tensor
- Certain results on \(K\)-contact and \((k, \mu )\)-contact manifolds
- Some applications of the Hodge-de Rham decomposition to Ricci solitons
- Contact metric manifolds whose characteristic vector field is a harmonic vector field
- Uniqueness of quasi-Einstein metrics on 3-dimensional homogeneous manifolds
- \((m,\rho)\)-quasi-Einstein metrics in the frame-work of \(K\)-contact manifolds
- The topology of contact Riemannian manifolds
- Quasi-Einstein manifolds endowed with a parallel vector field
- Einstein manifolds and contact geometry
- Generalized m-quasi-Einstein metric within the framework of Sasakian and K-contact manifolds
- CONTACT GEOMETRY AND RICCI SOLITONS
- INTEGRAL FORMULAE ON QUASI-EINSTEIN MANIFOLDS AND APPLICATIONS
- Riemannian geometry of contact and symplectic manifolds