\(\mathrm{klt}\) varieties with trivial canonical class: holonomy, differential forms, and fundamental groups
DOI10.2140/gt.2019.23.2051zbMath1423.14110arXiv1704.01408OpenAlexW3101489534WikidataQ115231038 ScholiaQ115231038MaRDI QIDQ2318712
Daniel Greb, Henri Guenancia, Stefan Kebekus
Publication date: 16 August 2019
Published in: Geometry \& Topology (Search for Journal in Brave)
Full work available at URL: https://arxiv.org/abs/1704.01408
stabilitydifferential formsfundamental groupsCalabi-Yau varietiesKähler-Einstein metricsirreducible holomorphic symplectic varietiesBochner principlesingular Beauville-Bogmolov decomposition
Calabi-Yau manifolds (algebro-geometric aspects) (14J32) Minimal model program (Mori theory, extremal rays) (14E30) Compact Kähler manifolds: generalizations, classification (32J27)
Related Items (25)
Cites Work
- Unnamed Item
- Unnamed Item
- Reflexive differential forms on singular spaces. Geometry and cohomology
- Differential forms on log canonical spaces
- Calabi-Yau threefolds of quotient type
- Étale fundamental groups of Kawamata log terminal spaces, flat sheaves, and quotients of abelian varieties
- Variétés kähleriennes dont la première classe de Chern est nulle
- On twistor spaces of the class \({\mathcal C}\)
- Holonomy groups of stable vector bundles
- Regularity properties of the degenerate Monge-Ampère equations on compact Kähler manifolds
- Existence and degeneration of Kähler-Einstein metrics on minimal algebraic varieties of general ype
- The first Chern class and holomorphic symmetric tensor fields
- Minimal varieties with trivial canonical classes. I
- The complex Monge-Ampère equation
- A decomposition theorem for singular spaces with trivial canonical class of dimension at most five
- Calabi-Yau quotients with terminal singularities
- Zariski-decomposition and abundance
- An introduction to the Kähler-Ricci flow. Selected papers based on the presentations at several meetings of the ANR project MACK
- Symmetric differentials and the fundamental group
- On base manifolds of Lagrangian fibrations
- Symmetric differentials, Kähler groups and ball quotients
- Algebraic integrability of foliations with numerically trivial canonical bundle
- On the Kähler-Ricci flow on projective manifolds of general type
- The weighted Monge-Ampère energy of quasiplurisubharmonic functions
- Singular symplectic moduli spaces
- Séminaire de géométrie algébrique du Bois Marie 1960/61 (SGA 1), dirigé par Alexander Grothendieck. Augmenté de deux exposés de M. Raynaud. Revêtements étales et groupe fondamental. Exposés I à XIII. (Seminar on algebraic geometry at Bois Marie 1960/61 (SGA 1), directed by Alexander Grothendieck. Enlarged by two reports of M. Raynaud. Ètale coverings and fundamental group)
- Representations lineaires et compactification profinie des groups discrets
- Movable Curves and Semistable Sheaves
- Singular Kähler-Einstein metrics
- Enriques manifolds
- On degenerate Monge-Ampere equations over closed Kahler manifolds
- DEGENERATE COMPLEX MONGE–AMPÈRE EQUATIONS OVER COMPACT KÄHLER MANIFOLDS
- Existence of minimal models for varieties of log general type
- A new proof of Gromov’s theorem on groups of polynomial growth
- Symmetry, Representations, and Invariants
- On the ricci curvature of a compact kähler manifold and the complex monge-ampére equation, I
- Groups with no nontrivial linear representations
- Local Simple Connectedness of Resolutions of Log-Terminal Singularities
- Semistability of the tangent sheaf of singular varieties
- Metrics with cone singularities along normal crossing divisors and holomorphic tensor fields
- On the most algebraic K3 surfaces and the most extremal log Enriques surfaces
This page was built for publication: \(\mathrm{klt}\) varieties with trivial canonical class: holonomy, differential forms, and fundamental groups