Effect on prediction when modeling covariates in Bayesian nonparametric models
DOI10.1080/15598608.2013.772811zbMath1423.62021OpenAlexW2005357881WikidataQ36850808 ScholiaQ36850808MaRDI QIDQ2320830
Clinton F. Stewart, Alejandro Cruz-Marcelo, Gary L. Rosner, Peter Mueller
Publication date: 27 August 2019
Published in: Journal of Statistical Theory and Practice (Search for Journal in Brave)
Full work available at URL: http://europepmc.org/articles/pmc3656440
hierarchical modelnonparametric BayesDirichlet process mixturepredictive distributiondependent Dirichlet processcovariates modeling
Inference from stochastic processes and prediction (62M20) Classification and discrimination; cluster analysis (statistical aspects) (62H30) Applications of statistics to biology and medical sciences; meta analysis (62P10) Nonparametric estimation (62G05)
Related Items
Cites Work
- Unnamed Item
- Unnamed Item
- Semiparametric Bayesian inference for stochastic frontier models
- A nonparametric dependent process for Bayesian regression
- A Bayesian analysis of some nonparametric problems
- Bayesian dynamic density estimation
- Variable selection in clustering via Dirichlet process mixture models
- Bayesian Nonparametric Nonproportional Hazards Survival Modeling
- Kernel stick-breaking processes
- Bayesian curve fitting using multivariate normal mixtures
- Semiparametric regression for count data
- Bayesian Inference for Linear Dynamic Models With Dirichlet Process Mixtures
- A Method for Combining Inference Across Related Nonparametric Bayesian Models
- Bayesian nonparametric hierarchical modeling
- Bayesian Density Regression
- An ANOVA Model for Dependent Random Measures
- A Bayesian Semiparametric Model for Random-Effects Meta-Analysis
- Bayesian Nonparametric Spatial Modeling With Dirichlet Process Mixing
- Order-Based Dependent Dirichlet Processes
- An adaptive Metropolis algorithm