An analytic \(LT\)-equivariant index and noncommutative geometry
From MaRDI portal
Publication:2327771
DOI10.4171/JNCG/330zbMath1429.58019arXiv1701.06055OpenAlexW2960560761MaRDI QIDQ2327771
Publication date: 15 October 2019
Published in: Journal of Noncommutative Geometry (Search for Journal in Brave)
Full work available at URL: https://arxiv.org/abs/1701.06055
Loop groups and related constructions, group-theoretic treatment (22E67) Exotic index theories on manifolds (58J22) Noncommutative geometry (à la Connes) (58B34)
Related Items
Geometric \(K\)-homology and the Freed-Hopkins-Teleman theorem ⋮ \(LT\)-equivariant index from the viewpoint of \(KK\)-theory. A global analysis on the infinite-dimensional Heisenberg group ⋮ Deformation of Dirac operators along orbits and quantization of noncompact Hamiltonian torus manifolds ⋮ Quantization of Hamiltonian loop group spaces
Cites Work
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Dirac operators on quasi-Hamiltonian \(G\)-spaces
- Elliptic and transversally elliptic index theory from the viewpoint of \(KK\)-theory
- The moment map for circle actions on symplectic manifolds
- Equivariant KK-theory and the Novikov conjecture
- A Bott periodicity theorem for infinite dimensional Euclidean space
- Lie group valued moment maps
- On the spectral characterization of manifolds
- A cubic Dirac operator and the emergence of Euler number multiplets of representations for equal rank subgroups
- Spinor modules for Hamiltonian loop group spaces
- The index of elliptic operators. I
- The index of elliptic operators. III
- Index theory for locally compact noncommutative geometries
- Symplectic reduction and Riemann-Roch formulas for multiplicities
- Loop groups and twisted $K$-theory II
- Basic noncommutative geometry