Exponential decay of Rényi divergence under Fokker-Planck equations
From MaRDI portal
Publication:2328698
DOI10.1007/s10955-019-02339-8zbMath1428.35599arXiv1805.06554OpenAlexW2804635973WikidataQ115603725 ScholiaQ115603725MaRDI QIDQ2328698
Yulong Lu, Yu Cao, Jian-feng Lu
Publication date: 10 October 2019
Published in: Journal of Statistical Physics (Search for Journal in Brave)
Full work available at URL: https://arxiv.org/abs/1805.06554
Asymptotic behavior of solutions to PDEs (35B40) Stochastic methods (Fokker-Planck, Langevin, etc.) applied to problems in time-dependent statistical mechanics (82C31) Fokker-Planck equations (35Q84)
Related Items (4)
On Tsallis and Kaniadakis divergences ⋮ Complexity of zigzag sampling algorithm for strongly log-concave distributions ⋮ HJB and Fokker-Planck equations for river environmental management based on stochastic impulse control with discrete and random observation ⋮ Hessian transport gradient flows
Cites Work
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Gradient flow structures for discrete porous medium equations
- An analog of the 2-Wasserstein metric in non-commutative probability under which the fermionic Fokker-Planck equation is gradient flow for the entropy
- Gradient flows of the entropy for finite Markov chains
- Strong converse for the classical capacity of entanglement-breaking and Hadamard channels via a sandwiched Rényi relative entropy
- A new class of transport distances between measures
- Quasi-entropies for finite quantum systems
- Hypercontractivity and logarithmic Sobolev inequalities for the Clifford- Dirichlet form
- Generalization of an inequality by Talagrand and links with the logarithmic Sobolev inequality
- Possible generalization of Boltzmann-Gibbs statistics.
- A computational fluid mechanics solution to the Monge-Kantorovich mass transfer problem
- Gradient flow and entropy inequalities for quantum Markov semigroups with detailed balance
- A step beyond Tsallis and Rényi entropies
- Sensitivity analysis for rare events based on Rényi divergence
- ON CONVEX SOBOLEV INEQUALITIES AND THE RATE OF CONVERGENCE TO EQUILIBRIUM FOR FOKKER-PLANCK TYPE EQUATIONS
- THE GEOMETRY OF DISSIPATIVE EVOLUTION EQUATIONS: THE POROUS MEDIUM EQUATION
- Concentration of Measure Inequalities in Information Theory, Communications, and Coding
- Rényi entropy and improved equilibration rates to self-similarity for nonlinear diffusion equations
- Rényi Divergence and Kullback-Leibler Divergence
- A closed-form expression for the Sharma–Mittal entropy of exponential families
- Robust Bounds on Risk-Sensitive Functionals via Rényi Divergence
- Logarithmic Sobolev Inequalities
- The Variational Formulation of the Fokker--Planck Equation
- Entropy production and the rate of convergence to equilibrium for the Fokker-Planck equation
- Inequalities for quantum divergences and the Audenaert–Datta conjecture
- Analysis and Geometry of Markov Diffusion Operators
- α-z-Rényi relative entropies
- On Pinsker's and Vajda's Type Inequalities for Csiszár's $f$-Divergences
- Gradient flow structure and exponential decay of the sandwiched Rényi divergence for primitive Lindblad equations with GNS-detailed balance
- Monotonicity of a relative Rényi entropy
- On quantum Rényi entropies: A new generalization and some properties
- Optimal Transport
This page was built for publication: Exponential decay of Rényi divergence under Fokker-Planck equations