An extension of the Euler-Maclaurin quadrature formula using a parametric type of Bernoulli polynomials
DOI10.1016/j.bulsci.2019.102798zbMath1461.11043OpenAlexW2981008381WikidataQ127020297 ScholiaQ127020297MaRDI QIDQ2331564
M. R. Beyki, Wolfram Koepf, Mohammad Masjed-Jamei
Publication date: 29 October 2019
Published in: Bulletin des Sciences Mathématiques (Search for Journal in Brave)
Full work available at URL: https://doi.org/10.1016/j.bulsci.2019.102798
generating functionsFourier expansionsAppell polynomialsBernoulli polynomials and numbersEuler-Maclaurin quadrature rules
Bernoulli and Euler numbers and polynomials (11B68) Polynomials in number theory (11C08) Analytic computations (11Y35)
Related Items (10)
Cites Work
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Symbolic computation of some power-trigonometric series
- Noncentral limit theorems and Appell polynomials
- On generalized poly-Bernoulli numbers and related \(L\)-functions
- Multiple zeta values at non-positive integers
- The Akiyama-Tanigawa matrix and related combinatorial identities
- Formal groups, Bernoulli-type polynomials and \(L\)-series
- The Cauchy numbers
- On \(p\)-Bernoulli numbers and polynomials
- POLYLOGARITHMS AND POLY-BERNOULLI POLYNOMIALS
- Explicit formula for generalization of poly-Bernoulli numbers and polynomials with a,b,c parameters
- The Arakawa-Kaneko zeta function
This page was built for publication: An extension of the Euler-Maclaurin quadrature formula using a parametric type of Bernoulli polynomials