Exact value of \(\operatorname{ex}(n; \{C_3, \ldots, C_s \})\) for \(n \leq \lfloor \frac{25(s - 1)}{8} \rfloor\)
From MaRDI portal
Publication:2341706
DOI10.1016/j.dam.2014.11.021zbMath1408.05073OpenAlexW2045687770MaRDI QIDQ2341706
Publication date: 28 April 2015
Published in: Discrete Applied Mathematics (Search for Journal in Brave)
Full work available at URL: https://doi.org/10.1016/j.dam.2014.11.021
Related Items (1)
Cites Work
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Girth of \(\{C_3, \ldots, C_s\}\)-free extremal graphs
- Graphs with maximum size and lower bounded girth
- Exact values of \(ex(\nu ; \{C_{3},C_{4},\dots ,C_n\})\)
- New families of graphs without short cycles and large size
- On the girth of extremal graphs without shortest cycles
- Calculating the extremal number \(ex(v;\{C_3,C_4,\dots,C_n\})\)
- The Moore bound for irregular graphs
- Extremal graphs without three‐cycles or four‐cycles
- On the structure of extremal graphs of high girth
This page was built for publication: Exact value of \(\operatorname{ex}(n; \{C_3, \ldots, C_s \})\) for \(n \leq \lfloor \frac{25(s - 1)}{8} \rfloor\)