The Cauchy problem for the Ostrovsky equation with negative dispersion at the critical regularity
From MaRDI portal
Publication:2344806
DOI10.1016/j.jde.2015.03.007zbMath1331.35092arXiv1411.0890OpenAlexW2964257888MaRDI QIDQ2344806
Yongsheng Li, Wei Yan, Jian Hua Huang
Publication date: 18 May 2015
Published in: Journal of Differential Equations (Search for Journal in Brave)
Full work available at URL: https://arxiv.org/abs/1411.0890
Related Items (9)
Convergence problem of reduced Ostrovsky equation in Fourier–Lebesgue spaces with rough data and random data ⋮ The Cauchy problem for the generalized Ostrovsky equation with negative dispersion ⋮ Convergence problem of Ostrovsky equation with rough data and random data ⋮ The Cauchy problem for quadratic and cubic Ostrovsky equation with negative dispersion ⋮ Sharp well-posedness of the Cauchy problem for a generalized Ostrovsky equation with positive dispersion ⋮ Stability of Solitary Waves of the Kadomtsev--Petviashvili Equation with a Weak Rotation ⋮ On the solutions for an Ostrovsky type equation ⋮ A note on the Ostrovsky equation in weighted Sobolev spaces ⋮ The Cauchy problem for the Ostrovsky equation with positive dispersion
Cites Work
- Remarks on the Ostrovsky equation.
- Well-posedness of the Cauchy problem for the Korteweg-de Vries equation at the critical regularity.
- Local and global well-posedness for the Ostrovsky equation
- Sharp well-posedness and ill-posedness results for a quadratic nonlinear Schrödinger equation
- On the support of solutions to the Ostrovsky equation with negative dispersion
- Cauchy problem for the Ostrovsky equation in spaces of low regularity
- The global attractor of the damped forced Ostrovsky equation
- Global Cauchy problem for the Ostrovsky equation
- Global well-posedness of the KP-I initial-value problem in the energy space
- Low regularity solution for a nonlocal perturbation of KdV equation
- On the support of solutions to the Ostrovsky equation with positive dispersion
- Symmetry and uniqueness of the solitary-wave solution for the Ostrovsky equation
- Local well-posedness and quantitative ill-posedness for the Ostrovsky equation
- Global well-posedness of Korteweg-de Vries equation in \(H^{-3/4}(\mathbb R)\)
- Well-posedness and weak rotation limit for the Ostrovsky equation
- Fourier transform restriction phenomena for certain lattice subsets and applications to nonlinear evolution equations. I: Schrödinger equations
- Fourier transform restriction phenomena for certain lattice subsets and applications to nonlinear evolution equations. II: The KdV-equation
- On the existence of stationary solitary waves in a rotating fluid
- Cauchy problem for the Ostrovsky equation
- Stability of solitary waves and weak rotation limit for the Ostrovsky equation
- The initial value problem for the 1-D semilinear Schrödinger equation in Besov spaces
- Unique continuation principle for the Ostrovsky equation with negative dispersion
- Stability and weak rotation limit of solitary waves of the Ostrovsky equation
- Multilinear weighted convolution of L 2 functions, and applications to nonlinear dispersive equations
- Global well-posedness of the Benjamin–Ono equation in low-regularity spaces
- On the Surface Waves in a Shallow Channel with an Uneven Bottom
- Approximate Analytical and Numerical Solutions of the Stationary Ostrovsky Equation
- On the Cauchy Problem for the Ostrovsky Equation with Positive Dispersion
- LOW-REGULARITY SOLUTIONS FOR THE OSTROVSKY EQUATION
This page was built for publication: The Cauchy problem for the Ostrovsky equation with negative dispersion at the critical regularity