The destructive negative binomial cure rate model with a latent activation scheme
From MaRDI portal
Publication:2360941
DOI10.1016/J.STAMET.2013.01.006zbMath1365.62410OpenAlexW2038215941WikidataQ36754691 ScholiaQ36754691MaRDI QIDQ2360941
Dipankar Bandyopadhyay, Bao Yiqi, Vicente G. Cancho, Francisco Louzada
Publication date: 29 June 2017
Published in: Statistical Methodology (Search for Journal in Brave)
Full work available at URL: http://europepmc.org/articles/pmc3622276
Applications of statistics to biology and medical sciences; meta analysis (62P10) General biostatistics (92B15) Point estimation (62F10) Reliability and life testing (62N05)
Related Items (14)
Zero-adjusted defective regression models for modeling lifetime data ⋮ Destructive negative binomial cure rate model and EM-based likelihood inference under Weibull lifetime ⋮ A new non-linear conjugate gradient algorithm for destructive cure rate model and a simulation study: illustration with negative binomial competing risks ⋮ A new destructive Poisson odd log-logistic generalized half-normal cure rate model ⋮ A flexible bimodal model with long-term survivors and different regression structures ⋮ On some inferential issues for the destructive COM-Poisson-generalized gamma regression cure rate model ⋮ A note on the EM algorithm for estimation in the destructive negative binomial cure rate model ⋮ On the estimation of destructive cure rate model: A new study with exponentially weighted Poisson competing risks ⋮ Unnamed Item ⋮ A new cure rate model based on the Yule–Simon distribution with application to a melanoma data set ⋮ A clustering cure rate model with application to a sealant study ⋮ A model with long-term survivors: negative binomial Birnbaum-Saunders ⋮ Compounding of distributions: a survey and new generalized classes ⋮ The new Neyman type A generalized odd log-logistic-G-family with cure fraction
Uses Software
Cites Work
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Destructive weighted Poisson cure rate models
- A stochastic two-stage carcinogenesis model: A new approach to computing the probability of observing tumor in animal bioassays
- On the unification of long-term survival models
- A New Bayesian Model for Survival Data with a Surviving Fraction
- A flexible model for survival data with a cure rate: a Bayesian approach
- Flexible Cure Rate Modeling Under Latent Activation Schemes
- Modelling geographically referenced survival data with a cure fraction
- Univariate Discrete Distributions
- Generalized Additive Models for Location, Scale and Shape
- Bayesian survival analysis
- Identifiability of cure models
This page was built for publication: The destructive negative binomial cure rate model with a latent activation scheme