Galois descent and \(K_ 2\) of number fields

From MaRDI portal
Publication:2366827

DOI10.1007/BF00962794zbMath0780.12007OpenAlexW2328001717MaRDI QIDQ2366827

Kahn, Bruno

Publication date: 26 January 1994

Published in: \(K\)-Theory (Search for Journal in Brave)

Full work available at URL: https://doi.org/10.1007/bf00962794




Related Items

\(K_2\) and the Greenberg conjecture in multiple \(\mathbb Z_p\)-extensionsLevels of function fields of surfaces over number fieldsNorm index formula for the Tate kernels and applicationsOn Orders of Tame Kernels in Quaternion Extension of Number FieldsA genus formula for the wild étale kernelCup product, étale capitulation kernels and generalized Greenberg conjectureOn the cyclotomic norms and the Leopoldt and Gross-Kuz'min conjecturesVALUES AT s = -1 OF L-FUNCTIONS FOR MULTI-QUADRATIC EXTENSIONS OF NUMBER FIELDS, AND THE FITTING IDEAL OF THE TAME KERNELPoitou–Tate duality for totally positive Galois cohomologyOn the classifying space of a linear algebraic group. I.Galois co-descent for étale wild kernels and capitulationTate kernels and capitulationThe Arason invariant and mod 2 algebraic cyclesTame Kernels of Quaternion Number FieldsCycles de codimension 2 etH3non ramifié pour les variétés sur les corps finisA genus formula for the positive étale wild kernelÉtale analogs of \(p\)-tower class field\(K\)-theory of surfaces at the prime 2Logarithmic approach of the étale wild kernels of number fields.On universal norms in \(\mathbb{Z}_ p\)-extensionsBounds for étale capitulation kernels. IIIsotropy of six-dimensional quadratic forms over function fields of quadricsON IWASAWA THEORY OF RUBIN–STARK UNITS AND NARROW CLASS GROUPSCapitulation for even \(K\)-groups in the cyclotomic \(\mathbb Z_p\)-extensionReflexion theoremsAlgebraic \(K\)-theory of the two-adic integers\(K\)-theory of curves over number fieldsIsotropy of 8-dimensional quadratic forms over function fields of quadrics



Cites Work