Property \(f^{-1}(S)=g^{-1}(S)\) for entire and meromorphic \(P\)-adic functions
From MaRDI portal
Publication:2368635
DOI10.1007/BF02904261zbMath1226.30042MaRDI QIDQ2368635
Abdelbaki Boutabaa, Alain Escassut
Publication date: 26 April 2006
Published in: Rendiconti del Circolo Matemàtico di Palermo. Serie II (Search for Journal in Brave)
Value distribution of meromorphic functions of one complex variable, Nevanlinna theory (30D35) Non-Archimedean function theory (30G06)
Related Items (4)
Corrigendum: ``Urs, ursim, and non-urs for \(p\)-adic functions and polynomials ⋮ On uniqueness polynomials and bi-URS for \(p\)-adic meromorphic functions ⋮ Applications of the \(p\)-adic Nevanlinna theory to functional equations. ⋮ Unique range sets for meromorphic functions on
Cites Work
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Theorie de Nevanlinna p-adique. (p-adic Nevanlinna theory)
- Applications of \(p\)-adic Nevanlinna theory
- Urs, ursim, and non-urs for \(p\)-adic functions and polynomials
- On uniqueness of \(p\)-adic entire functions
- On uniqueness of 𝑝-adic meromorphic functions
- Uniqueness of non-Archimedean entire functions sharing sets of values counting multiplicity
- A unique range set for meromorphic functions with 11 elements
This page was built for publication: Property \(f^{-1}(S)=g^{-1}(S)\) for entire and meromorphic \(P\)-adic functions