An efficient algorithm for the Schrödinger-Poisson eigenvalue problem
DOI10.1016/j.cam.2006.05.013zbMath1122.65105OpenAlexW2162278782MaRDI QIDQ2372947
B.-W. Jeng, Cheng-Sheng Chien, Shing-Lin Chang
Publication date: 17 July 2007
Published in: Journal of Computational and Applied Mathematics (Search for Journal in Brave)
Full work available at URL: https://doi.org/10.1016/j.cam.2006.05.013
convergencewave functionstwo-grid methodSchrödinger-Poisson systemRayleigh quotient iterationconjugate gradient iterationsnonlinear potentialSchrödinger eigenvalue problem
Estimates of eigenvalues in context of PDEs (35P15) Stability and convergence of numerical methods for boundary value problems involving PDEs (65N12) Numerical methods for eigenvalue problems for boundary value problems involving PDEs (65N25)
Related Items
Uses Software
Cites Work
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Numerical simulation of three dimensional pyramid quantum dot
- A simple application of the homotopy method to symmetric eigenvalue problems
- Homotopy algorithm for symmetric eigenvalue problems
- A new look at the Lanczos algorithm for solving symmetric systems of linear equations
- Path following around corank-2 bifurcation points of a semi-linear elliptic problem with symmetry
- Stationary solutions of quasi-linear Schrödinger-Poisson systems
- Numerical methods for semiconductor heterostructures with band nonparabolicity
- Long-time dynamics of the Schrödinger-Poisson-Slater system
- Parallel homotopy algorithm for symmetric large sparse eigenproblems
- Homotopy method for the numerical solution of the eigenvalue problem of self-adjoint partial differential operators
- Einige abstrakte Begriffe in der numerischen Mathematik (Anwendungen der Halbordnung).(Some abstract notions in the numerical mathematic. (Applications et semiorder))
- PLTMGC: A Multigrid Continuation Program for Parameterized Nonlinear Elliptic Systems
- The Rayleigh Quotient Iteration and Some Generalizations for Nonnormal Matrices
- Solution of Sparse Indefinite Systems of Linear Equations
- MINRES and MINERR Are Better than SYMMLQ in Eigenpair Computations
- Introduction to Numerical Continuation Methods
- A two-grid discretization scheme for eigenvalue problems
- Continuation and Local Perturbation for Multiple Bifurcations
- Fourier Analysis of Iterative Methods for Elliptic pr
- Numerical Methods for Bifurcations of Dynamical Equilibria
- A Two-Grid Discretization Scheme for Semilinear Elliptic Eigenvalue Problems