\(L ^{2}\)-\(\overline{\partial}\)-cohomology groups of some singular complex spaces

From MaRDI portal
Publication:2377346

DOI10.1007/s00222-012-0414-3zbMath1279.32007arXiv1101.1860OpenAlexW2469037646MaRDI QIDQ2377346

Nils Øvrelid, Sophia K. Vassiliadou

Publication date: 28 June 2013

Published in: Inventiones Mathematicae (Search for Journal in Brave)

Full work available at URL: https://arxiv.org/abs/1101.1860




Related Items

<mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:msup><mml:mi>L</mml:mi> <mml:mn>2</mml:mn> </mml:msup></mml:math>-theory for the <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mover><mml:mi>∂</mml:mi> <mml:mo>¯</mml:mo></mml:mover></mml:math>-operator on complex spaces with isolated singularities$$L^2$$ -Serre Duality on Singular Complex Spaces and ApplicationsParabolicity of the regular locus of complex varieties\(L ^{2}\)-\(\overline{\partial}\)-cohomology groups of some singular complex spacesA pointwise norm on a non-reduced analytic spaceThe \(\bar{\partial}\)-equation, duality, and holomorphic forms on a reduced complex spaceEstimates for the \({\bar{\partial }} \)-equation on canonical surfacesNorm estimates for the \(\bar{\partial}\)-equation on a non-reduced spaceThe \(\bar{\partial }\)-equation on a non-reduced analytic spaceDegenerating Hermitian metrics and spectral geometry of the canonical bundleSubelliptic estimates for the \(\bar\partial\)-problem on a singular complex space\(L^2\)-theory for the \(\overline{\partial}\)-operator on compact complex spaces\(L^2\)-properties of the \(\overline{\partial}\) and the \(\overline{\partial}\)-Neumann operator on spaces with isolated singularitiesKoppelman formulas on the \(A_{1}\)-singularityKoppelman formulas on affine cones over smooth projective complete intersectionsGlobal Koppelman formulas on (singular) projective varietiesOn the Laplace–Beltrami operator on compact complex spaces



Cites Work


This page was built for publication: \(L ^{2}\)-\(\overline{\partial}\)-cohomology groups of some singular complex spaces