\(A_{n}\) theory, L.S. category, and strong category
From MaRDI portal
Publication:2384740
DOI10.1007/s00209-007-0116-5zbMath1140.55003OpenAlexW2020503846MaRDI QIDQ2384740
Publication date: 10 October 2007
Published in: Mathematische Zeitschrift (Search for Journal in Brave)
Full work available at URL: https://doi.org/10.1007/s00209-007-0116-5
Lyusternik-Shnirel'man category of a space, topological complexity à la Farber, topological robotics (topological aspects) (55M30) (H)-spaces and duals (55P45) Loop space machines and operads in algebraic topology (55P48)
Cites Work
- Quasifaserungen und unendliche symmetrische Produkte
- The categories of \(A_{\infty}\) and \(E_{\infty}\)-monoids and ring spaces as closed simplicial and topological model categories
- Sur la structure des espaces de L. S. catégorie deux. (On the structures of the spaces of L. S. category two)
- Co-H-maps to spheres
- On higher coassociativity
- On category, in the sense of Lusternik-Schnirelmann
- A counterexample to the Lemaire-Sigrist conjecture
- Cone-length and Lusternik-Schnirelmann category
- Comultiplication and suspension
- A generalization of the triad theorem of Blakers-Massey
- Homotopy coalgebras and \(k\)-fold suspensions
- A remark on 'homotopy fibrations'
- Cofibrant operads and universal \(E_{\infty}\) operads.
- Spaces with Lusternik-Schnirelmann category \(n\) and cone length \(n + 1\)
- Ganea comonads
- A\(_{\infty}\)-method in Lusternik-Schnirelmann category
- Strong LS category equals cone-length
- On the homotopy type of classifying spaces
- Categories and cohomology theories
- Homotopy invariant algebraic structures on topological spaces
- A generalization of the homology and homotopy suspension
- A convenient category of topological spaces
- Lusternik-Schnirelmann category and strong category
- The bar construction and Abelian H-spaces
- Homotopical algebra
- Milgram's classifying space of a topological group
- Cogroups and suspensions
- Classifying spaces and spectral sequences
- Convenient categories of topological spaces for homotopy theory
- Configuration-spaces and iterated loop-spaces
- Category and generalized Hopf invariants
- On suspensions and comultiplications
- A Remark on An -Spaces and Loop Spaces
- Ganea's Conjecture on Lusternik-Schnirelmann Category
- Invariants of the Lusternik-Schnirelmann Type and the Topology of Critical Sets
- Lusternik-Schnirelmann-categorical sections
- ON THE REPRESENTATION OF LOOPSPACES AS COMPLEXES OF THE REDUCED PRODUCT TYPE
- The category of a map and of a cohomology class
- FAMILIES OF H-SPACES
- Homotopy Associativity of H-Spaces. I
- On the Lusternik-Schnirelmann category
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
This page was built for publication: \(A_{n}\) theory, L.S. category, and strong category