Quasitriangular (\(G\)-cograded) multiplier Hopf algebras.
From MaRDI portal
Publication:2386074
DOI10.1016/j.jalgebra.2005.02.023zbMath1079.16022arXivmath/0408220OpenAlexW1977656261MaRDI QIDQ2386074
Lydia Delvaux, Alfons Van Daele, Shuan-Hong Wang
Publication date: 22 August 2005
Published in: Journal of Algebra (Search for Journal in Brave)
Full work available at URL: https://arxiv.org/abs/math/0408220
Lua error in Module:PublicationMSCList at line 37: attempt to index local 'msc_result' (a nil value).
Related Items (14)
On corepresentations of multiplier Hopf algebras. ⋮ An algebraic framework for the Drinfeld double based on infinite groupoids ⋮ Multiplier Hopf algebras in categories and the biproduct construction. ⋮ A lot of quasitriangular group-cograded multiplier Hopf algebras. ⋮ Yetter–Drinfel'd Modules for Group-Cograded Multiplier Hopf Algebras ⋮ A CLASS OF QUASITRIANGULAR GROUP-COGRADED MULTIPLIER HOPF ALGEBRAS ⋮ Notes on Drinfeld twists of multiplier Hopf algebras ⋮ Larson–Sweedler Theorem and Some Properties of Discrete Type in (G-Cograded) Multiplier Hopf Algebras ⋮ On the Antipode of a Co-Frobenius (Co)Quasitriangular Hopf Algebra ⋮ Constructing Quasitriangular Multiplier Hopf Algebras By Twisted Tensor Coproducts ⋮ Constructing New BraidedT-Categories Over Regular Multiplier Hopf Algebras ⋮ Traces on Multiplier Hopf Algebras ⋮ On BraidedT-Categories over Multiplier Hopf Algebras ⋮ Constructing Quasitriangular Hopf Algebras
Cites Work
- Group-cograded multiplier Hopf (\(*\)-)algebras.
- On the antipode of a quasitriangular Hopf algebra
- An algebraic framework for group duality
- Multiplier Hopf algebras of discrete type
- Finiteness conditions, co-Frobenius Hopf algebras, and quantum groups
- The Drinfel'd double of multiplier Hopf algebras.
- The Drinfel'd double versus the Heisenberg double for an algebraic quantum group.
- Double construction for crossed Hopf coalgebras.
- The Drinfel'd double for group-cograded multiplier Hopf algebras.
- The Order of the Antipode of a Finite Dimensional Hopf Algebra is Finite
- The quantum double of a cofrobenius hopf algebra
- Actions of multiplier hopf algebras
- Multiplier Hopf Algebras
- Pairing and quantum double of multiplier Hopf algebras
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
This page was built for publication: Quasitriangular (\(G\)-cograded) multiplier Hopf algebras.