\(\mu\)-constant monodromy groups and marked singularities
From MaRDI portal
Publication:2391369
DOI10.5802/aif.2789zbMath1279.32021arXiv1108.0546OpenAlexW2963786156MaRDI QIDQ2391369
Publication date: 31 July 2013
Published in: Annales de l'Institut Fourier (Search for Journal in Brave)
Full work available at URL: https://arxiv.org/abs/1108.0546
moduli spacemonodromy group\(\mu\)-constant deformatiommarked singularitysymmetries of singularitiesTorelli type problem
Equisingularity (topological and analytic) (32S15) Symmetries, equivariance on manifolds (58K70) Monodromy; relations with differential equations and (D)-modules (complex-analytic aspects) (32S40) Fine and coarse moduli spaces (14D22)
Related Items
Seven combinatorial problems around isolated quasihomogeneous singularities, The combinatorics of weight systems and characteristic polynomials of isolated quasihomogeneous singularities, μ-Constant Monodromy Groups and Torelli Results for Marked Singularities, for the Unimodal and Some Bimodal Singularities
Cites Work
- Sur le rôle de la monodromie entière dans la topologie des singularités
- On the mixed Hodge structure on the cohomology of the Milnor fibre
- On the structure of Brieskorn lattice
- Tresses, monodromie et le groupe symplectique
- Bifurcations, Dynkin diagrams, and modality of isolated singularities
- Complex analytic geometry
- Einige Bemerkungen zur Entfaltung symmetrischer Funktionen
- A Torelli theorem for unimodal and bimodal hypersurface singularities
- Komplexe Räume mit komplexen Transformationsgruppen
- Stability of \(C^ \infty\) mappings. III: Finitely determined map germs
- A Note on Symmetry of Singularities
- Period mapping via Brieskorn modules
- NORMAL FORMS OF FUNCTIONS IN NEIGHBOURHOODS OF DEGENERATE CRITICAL POINTS
- Intégrales asymptotiques et monodromie
- The Invariance of Milnor's Number Implies the Invariance of the Topological Type
- Singular Points of Complex Hypersurfaces. (AM-61)
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item