Über holomorphe \(P_ n\)-Bündel über \(P_ 1\)

From MaRDI portal
Publication:2394631

DOI10.1007/BF02028245zbMath0128.17003MaRDI QIDQ2394631

Egbert Brieskorn

Publication date: 1965

Published in: Mathematische Annalen (Search for Journal in Brave)

Full work available at URL: https://eudml.org/doc/161245



Related Items

Fibrés stables et fibrés exceptionnels sur $\mathbb{P}_2$, Deformations of cones over canonical trigonal curves, Action of the loop group on the self-dual Yang-Mills equation, On the jumping conics of a semistable rank two vector bundle on \(\mathbb P^2\), Life and work of Egbert Brieskorn (1936--2013), Holomorphic curves in loop groups, On the normal bundles of smooth rational space curves, Recognizing the \(\mathsf{G}_2\)-horospherical manifold of Picard number 1 by varieties of minimal rational tangents, Droites de saut des fibres stables de rang eleve sur \(P_ 2\)., Deformations of principal bundles on the projective line, On the variety of smooth rational space curves with given degree and normal bundle, Deformation classes in generalized Kähler geometry, Compactifications équivariantes par des courbes, A decomposability criterion for algebraic 2-bundles on projective spaces, Some properties of stable rank-2 vector bundles on \(\mathbb{P}_n\), Les fibres uniformes de rang 3 sur \(\mathbb{P}_2(\mathbb{C})\) sont homogènes, Über die Auflösung gewisser Singularitäten von holomorphen Abbildungen, Ruled threefolds homeomorphic to \({\mathbb{P}}^ 2\times {\mathbb{P}}^ 1\) and their divisors, Groupe de Picard des variétés de modules de faisceaux semi-stable sur \({\mathbb{P}}_ 2({\mathbb{C}})\). (Picard group of the moduli varieties of semi- stable sheaves on \({\mathbb{P}}_ 2({\mathbb{C}}))\), Deformierbare Singularitäten. (Deformable singularities), Variétés de modules alternatives. (Alternative moduli varieties.), A CRITERION FOR THE EXISTENCE OF A PARABOLIC STABLE BUNDLE OF RANK TWO OVER THE PROJECTIVE LINE, Unnamed Item, Modulräume stabiler Vektorraumbündel vom Rang 2 auf rationalen Regelflächen



Cites Work