Nonlinear reaction-diffusion systems. Conditional symmetry, exact solutions and their applications in biology

From MaRDI portal
Publication:2399895

DOI10.1007/978-3-319-65467-6zbMath1391.35003OpenAlexW4251048656MaRDI QIDQ2399895

Vasyl' Davydovych, Roman M. Cherniha

Publication date: 24 August 2017

Published in: Lecture Notes in Mathematics (Search for Journal in Brave)

Full work available at URL: https://doi.org/10.1007/978-3-319-65467-6




Related Items (26)

Conditional symmetries and exact solutions of a nonlinear three-component reaction-diffusion modelA reaction–diffusion system with cross-diffusion: Lie symmetry, exact solutions and their applications in the pandemic modellingNonclassical symmetry solutions for fourth-order phase field reaction-diffusionLie symmetry of the diffusive Lotka-Volterra system with time-dependent coefficientsConstruction and application of exact solutions of the diffusive Lotka-Volterra system: a review and new resultsExact nonclassical symmetry solutions of Lotka–Volterra-type population systemsSymmetries and exact solutions of the diffusive Holling-Tanner prey-predator modelIntegrable nonlinear reaction-diffusion population models for fisheriesInvariant subspace method and exact solutions of the coupled system of time-fractional convection-reaction-diffusion equationsThe Shigesada-Kawasaki-Teramoto model: conditional symmetries, exact solutions and their propertiesOn a finite population variation of the Fisher-KPP equationMeta-Schrödinger transformationsFunctional separable solutions of nonlinear convection-diffusion equations with variable coefficientsA complete Lie symmetry classification of a class of (1+2)-dimensional reaction-diffusion-convection equationsInfinite-dimensional meta-conformal Lie algebras in one and two spatial dimensionsGeneralized traveling-wave solutions of nonlinear reaction-diffusion equations with delay and variable coefficientsNumerical simulation and symmetry reduction of a two-component reaction-diffusion systemLie symmetries of the Shigesada-Kawasaki-Teramoto systemFunctional separable solutions of nonlinear reaction-diffusion equations with variable coefficientsIterative learning control-based tracking synchronization for linearly coupled reaction-diffusion neural networks with time delay and iteration-varying switching topologyA hunter-gatherer–farmer population model: Lie symmetries, exact solutions and their interpretationPreliminary group classification and some exact solutions of the 2-Hessian equationOn a nonlinear mathematical model for the description of the competition and coexistence of different-language speakersReductions and exact solutions of Lotka-Volterra and more complex reaction-diffusion systems with delaysCombining polynomial chaos expansions and the random variable transformation technique to approximate the density function of stochastic problems, including some epidemiological modelsA hunter-gatherer-farmer population model: new conditional symmetries and exact solutions with biological interpretation




This page was built for publication: Nonlinear reaction-diffusion systems. Conditional symmetry, exact solutions and their applications in biology