Dimensional homotopy t-structures in motivic homotopy theory
From MaRDI portal
Publication:2400510
DOI10.1016/j.aim.2017.02.003zbMath1403.14053arXiv1512.06044OpenAlexW2896960251MaRDI QIDQ2400510
Frédéric Déglise, Mikhail Vladimirovich Bondarko
Publication date: 29 August 2017
Published in: Advances in Mathematics (Search for Journal in Brave)
Full work available at URL: https://arxiv.org/abs/1512.06044
Related Items
Fundamental classes in motivic homotopy theory, On the rational motivic homotopy category, Smooth weight structures and birationality filtrations on motivic categories, Artin perverse sheaves, On some finiteness results in real étale cohomology, Equivariant Chow-Witt groups and moduli stacks of elliptic curves, Trace maps in motivic homotopy and local terms, Künneth formulas for motives and additivity of traces, The homotopy Leray spectral sequence, On Chow-weight homology of motivic complexes and its relation to motivic homology, Picard groups, weight structures, and (noncommutative) mixed motives, Bivariant theories in motivic stable homotopy, On Chow weight structures for $cdh$-motives with integral coefficients, On infinite effectivity of motivic spectra and the vanishing of their motives, On Chow-weight homology of geometric motives
Cites Work
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Integral mixed motives in equal characteristic
- \(\mathbb A^1\)-algebraic topology over a field
- Algebraic tori as Nisnevich sheaves with transfers
- Motivic complexes over nonperfect fields
- Motivically functorial coniveau spectral sequences; direct summands of cohomology of function fields
- Cancellation theorem
- Modules homotopiques
- Isomotives of dimension less than or equal to one
- Desingularization of quasi-excellent schemes in characteristic zero
- Local and stable homological algebra in Grothendieck abelian categories
- Sur l'anneau de Chow d'une variété abélienne
- Cohomologie étale. Seminaire de géométrie algébrique du Bois-Marie SGA 4 1/2 par P. Deligne, avec la collaboration de J. F. Boutot, A. Grothendieck, L. Illusie et J. L. Verdier
- Classical motivic polylogarithm according to Beilinson and Deligne
- Chow groups with coefficients
- On constructing weight structures and extending them to idempotent completions
- Algebraic K-theory and classfield theory for arithmetic surfaces
- Birational motivic homotopy theories and the slice filtration
- Voevodsky's motives and Weil reciprocity
- Direct limits in the heart of a t-structure: the case of a torsion pair
- Tame distillation and desingularization by \(p\)-alterations
- Generic motives
- Torsion pairs in silting theory
- The stable \(\mathbb{A}^1\)-connectivity theorems
- Around the Gysin triangle. II.
- Éléments de géométrie algébrique. IV: Étude locale des schémas et des morphismes de schémas. (Séconde partie)
- Complexe cotangent et déformations. I. (The cotangent complex and deformations. I.)
- Sur quelques points d'algèbre homologique
- Éléments de géométrie algébrique. I: Le langage des schémas. II: Étude globale élémentaire de quelques classe de morphismes. III: Étude cohomologique des faisceaux cohérents (première partie)
- On Milnor K-groups attached to semi-Abelian varieties
- Étale motives
- On Chow weight structures for $cdh$-motives with integral coefficients
- A Nullstellensatz for triangulated categories
- Coniveau filtration and mixed motives
- Weights for Relative Motives: Relation with Mixed Complexes of Sheaves
- Weight structures vs.t-structures; weight filtrations, spectral sequences, and complexes (for motives and in general)
- ℤ[1/p-motivic resolution of singularities]
- Structure de poids à la Bondarko sur les motifs de Beilinson
- On the relative motive of a commutative group scheme
- Néron Models
- Gersten's conjecture and the homology of schemes
- Cycles, Transfers, and Motivic Homology Theories. (AM-143)
- Construction of 𝑡-structures and equivalences of derived categories
- Orientable homotopy modules
- La réalisation étale et les opérations de Grothendieck
- \(\mathbb{A}^1\)-homotopy theory of schemes