Motivic Milnor fibre of cyclic \(L_\infty\)-algebras
DOI10.1007/s10114-017-6163-xzbMath1376.14058arXiv0909.2858OpenAlexW2591107967MaRDI QIDQ2404065
Publication date: 12 September 2017
Published in: Acta Mathematica Sinica. English Series (Search for Journal in Brave)
Full work available at URL: https://arxiv.org/abs/0909.2858
motivic Milnor fiber\(L_\infty\)-algebraDonaldson-Thomas invariantsBehrend functionanalytic Milnor fiber
Singularities in algebraic geometry (14B05) Gromov-Witten invariants, quantum cohomology, Gopakumar-Vafa invariants, Donaldson-Thomas invariants (algebro-geometric aspects) (14N35) Gromov-Witten invariants, quantum cohomology, Frobenius manifolds (53D45)
Related Items (4)
Cites Work
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Cohomological Hall algebra, exponential Hodge structures and motivic Donaldson-Thomas invariants
- Desingularization of quasi-excellent schemes in characteristic zero
- Donaldson-Thomas type invariants via microlocal geometry
- A trace formula for rigid varieties, and motivic Weil generating series for formal schemes
- La fonction zeta d'une monodromie
- Vanishing cycles for formal schemes
- Étale cohomology for non-Archimedean analytic spaces
- Localization of differential systems, Whitney stratification and Thom condition
- Motivic integration on smooth rigid varieties and invariants of degenerations
- Vanishing cycles for formal schemes. II
- Motivic exponential integrals and a motivic Thom-Sebastiani theorem
- Lie theory for nilpotent \(L_{\infty}\)-algebras
- Motivic Serre invariants, ramification, and the analytic Milnor fiber
- Singular cohomology of the analytic Milnor fiber, and mixed Hodge structure on the nearby cohomology
- Gromov–Witten theory and Donaldson–Thomas theory, I
- Singular Points of Complex Hypersurfaces. (AM-61)
- Vanishing cycles for non-archimedean analytic spaces
This page was built for publication: Motivic Milnor fibre of cyclic \(L_\infty\)-algebras