Cosilting complexes and AIR-cotilting modules
DOI10.1016/j.jalgebra.2017.07.022zbMath1406.16004arXiv1601.01385OpenAlexW2963188109WikidataQ112881663 ScholiaQ112881663MaRDI QIDQ2404935
Publication date: 21 September 2017
Published in: Journal of Algebra (Search for Journal in Brave)
Full work available at URL: https://arxiv.org/abs/1601.01385
quasi-cotilting modulestorsion-free classAIR-cotilting modulescosilting complexescosilting modulesprecover class
Module categories in associative algebras (16D90) Representations of associative Artinian rings (16G10) Syzygies, resolutions, complexes in associative algebras (16E05) Derived categories and associative algebras (16E35)
Related Items (21)
Cites Work
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Silted algebras
- Auslander-Buchweitz context and co-\(t\)-structures
- Tilting modules of finite projective dimension
- Quasi-tilting modules and counter equivalences
- Tilting modules of finite projective dimension and a generalization of \(*\)-modules.
- A characterization of \(n\)-cotilting and \(n\)-tilting modules.
- Cosilting modules
- \(n\)-star modules and \(n\)-tilting modules.
- Applications of contravariantly finite subcategories
- Tilting modules and tilting torsion theories
- Semi-tilting complexes.
- Silting objects, simple-minded collections, \(t\)-structures and co-\(t\)-structures for finite-dimensional algebras.
- Infinitely generated tilting modules of finite projective dimension
- Subcategories of the derived category and cotilting complexes
- Silting Modules
- Silting mutation in triangulated categories
- All 𝑛-cotilting modules are pure-injective
- Morita Theory for Derived Categories
- Tilted Algebras
- Cotilting modules are pure-injective
- Quasi-cotilting modules and torsion-free classes
- -tilting theory
- A Torsion Theory for Abelian Categories
- Tilting preenvelopes and cotilting precovers
- A silting theorem
This page was built for publication: Cosilting complexes and AIR-cotilting modules