Strong topologies for spaces of smooth maps with infinite-dimensional target
From MaRDI portal
Publication:2407565
DOI10.1016/j.exmath.2016.07.004zbMath1379.58004arXiv1603.09127OpenAlexW3100031412MaRDI QIDQ2407565
Eivind Otto Hjelle, Alexander Schmeding
Publication date: 6 October 2017
Published in: Expositiones Mathematicae (Search for Journal in Brave)
Full work available at URL: https://arxiv.org/abs/1603.09127
bisections of a Lie groupoidcontinuity of compositionmanifolds of smooth mapstopologies on spaces of smooth functionsWhitney topologies
Function spaces in general topology (54C35) Pseudogroups and differentiable groupoids (58H05) Differentiable maps on manifolds (58C25) Manifolds of mappings (58D15) Calculus of functions taking values in infinite-dimensional spaces (26E20)
Related Items
A -seeley-extension-theorem for Bastiani’s differential calculus, Lie theory for asymptotic symmetries in general relativity: The NU group, Linking Lie groupoid representations and representations of infinite-dimensional Lie groups, Completeness of Infinite-dimensional Lie Groups in Their Left Uniformity, Lie groupoids of mappings taking values in a Lie groupoid, A differentiable monoid of smooth maps on Lie groupoids, Convergence of Lie group integrators, Lie rackoids integrating Courant algebroids, The Lie group of vertical bisections of a regular Lie groupoid, On the unit component of the Newman–Unti group, Extending Whitney's extension theorem: nonlinear function spaces
Cites Work
- (Re)constructing Lie groupoids from their bisections and applications to prequantisation
- Towards a Lie theory of locally convex groups
- Differential calculus in locally convex spaces
- The very-strong C\(^\infty\) topology on C\(^{\infty}(M,N)\) and \(K\)-equivariant maps
- Double Lie algebroids and second-order geometry. II
- The Lie group of bisections of a Lie groupoid
- Applications différentiables et variétés différentiables de dimension infinie
- An exact sequence in differential topology
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item