Convergence of iterates of convolution operators in \(L^p\) spaces
From MaRDI portal
Publication:2414445
DOI10.1016/j.bulsci.2019.01.005zbMath1458.43001OpenAlexW2909775391MaRDI QIDQ2414445
Publication date: 13 May 2019
Published in: Bulletin des Sciences Mathématiques (Search for Journal in Brave)
Full work available at URL: https://doi.org/10.1016/j.bulsci.2019.01.005
convergencemeasure algebragroup algebra\(L^p\)-spaceconvolution operatorlocally compact abelian group
Homomorphisms and multipliers of function spaces on groups, semigroups, etc. (43A22) Measure algebras on groups, semigroups, etc. (43A10) (L^1)-algebras on groups, semigroups, etc. (43A20)
Related Items (2)
On the convergence of iterates of convolution operators in Banach spaces ⋮ Ergodic properties of convolution operators in group algebras
Cites Work
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Distance formulas in group algebras
- Sur le comportement asymptotique des puissances de convolution d'une probabilité
- Convergence of iterates of averages of certain operator representations and of convolution powers
- Ergodic theorems for convolutions of a measure on a group
- The asymptotic behaviour of semigroups of linear operators
- On the spectra of multipliers
- Multipliers of commutative Banach algebras, power boundedness and Fourier-Stieltjes algebras
- On Some Properties of the Banach Algebras A p (G) for Locally Compact Groups
- Subadditive mean ergodic theorems
- On Iterates of Convolutions
- Ideals in subalgebras of the group algebras
- Measures with Bounded Convolution Powers
This page was built for publication: Convergence of iterates of convolution operators in \(L^p\) spaces