Double, borderline, and extraordinary eigenvalues of Kac-Murdock-Szegő matrices with a complex parameter
From MaRDI portal
Publication:2419075
DOI10.1016/j.laa.2019.04.017zbMath1414.15010arXiv1812.06437OpenAlexW2903641462MaRDI QIDQ2419075
Themistoklis K. Mavrogordatos, George Fikioris
Publication date: 29 May 2019
Published in: Linear Algebra and its Applications (Search for Journal in Brave)
Full work available at URL: https://arxiv.org/abs/1812.06437
Numerical computation of eigenvalues and eigenvectors of matrices (65F15) Eigenvalues, singular values, and eigenvectors (15A18) Toeplitz, Cauchy, and related matrices (15B05)
Related Items (2)
Eigenvalue bifurcations in Kac-Murdock-Szegő matrices with a complex parameter ⋮ Eigenvalue contour lines of Kac-Murdock-Szegő matrices with a complex parameter
Cites Work
- Eigenvalues of Hermitian Toeplitz matrices with polynomially increasing entries
- Inertia characteristics of self-adjoint matrix polynomials
- Asymptotic distribution of the spectra of a class of generalized Kac-Murdock-Szegö matrices
- Spectral distribution of generalized Kac-Murdock-Szegö matrices
- Spectral properties of Kac-Murdock-Szegö matrices with a complex parameter
- Exceptional points in optics and photonics
- Unnamed Item
- Unnamed Item
This page was built for publication: Double, borderline, and extraordinary eigenvalues of Kac-Murdock-Szegő matrices with a complex parameter