Affine Gaudin models and hypergeometric functions on affine opers
DOI10.1016/j.aim.2019.04.032zbMath1459.17043arXiv1804.01480OpenAlexW2964160615WikidataQ127918590 ScholiaQ127918590MaRDI QIDQ2421255
Sylvain Lacroix, Benoît Vicedo, Charles A. S. Young
Publication date: 14 June 2019
Published in: Advances in Mathematics (Search for Journal in Brave)
Full work available at URL: https://arxiv.org/abs/1804.01480
Kac-Moody (super)algebras; extended affine Lie algebras; toroidal Lie algebras (17B67) Infinite-dimensional groups and algebras motivated by physics, including Virasoro, Kac-Moody, (W)-algebras and other current algebras and their representations (81R10) Exactly solvable models; Bethe ansatz (82B23) Hypergeometric functions associated with root systems (33C67)
Related Items (13)
Cites Work
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Integrable structure of quantum field theory: classical flat connections versus quantum stationary states
- Cyclotomic Gaudin models: construction and Bethe ansatz
- Bethe ansatz and the spectral theory of affine Lie algebra-valued connections. II: The non simply-laced case
- Quantum integrable model of an arrangement of hyperplanes
- Opers with irregular singularity and spectra of the shift of argument subalgebra
- ODE/IM correspondence for the Fateev model
- On the Harish-Chandra homomorphism for infinite-dimensional Lie algebras
- Higher-spin conserved currents in supersymmetric sigma models on symmetric spaces
- The argument shift method and the Gaudin model
- Lie algebras and equations of Korteweg-de Vries type
- Unitary representations of the Virasoro and super-Virasoro algebras
- Unitary reflection groups and cohomology
- Arrangements of hyperplanes and Lie algebra homology
- Gaudin model, Bethe ansatz and critical level
- Spectra of quantum KdV Hamiltonians, Langlands duality, and affine opers
- Local charges in involution and hierarchies in integrable sigma-models
- Spectral curves, opers and integrable systems.
- Higher-level eigenvalues of \(Q\)-operators and Schrödinger equation
- Quantum sine(h)-Gordon model and classical integrable equations
- Cubic hypergeometric integrals of motion in affine Gaudin models
- Cyclotomic Gaudin models with irregular singularities
- Critical points of master functions and integrable hierarchies
- Bethe ansatz and the spectral theory of affine Lie algebra-valued connections. I: The simply-laced case
- Gaudin models with irregular singularities
- Vertex Lie algebras and cyclotomic coinvariants
- Schubert calculus and representations of the general linear group
- Quantization of soliton systems and Langlands duality
- Critical Points of Master Functions and the mKdV Hierarchy of Type A 2 (2)
- Integrals of motion from quantum toroidal algebras
- Anharmonic oscillators, the thermodynamic Bethe ansatz and nonlinear integral equations
- The ODE/IM correspondence
- Commuting charges and symmetric spaces
- Conserved charges and supersymmetry in principal chiral and WZW models
- Integrable sigma-models and Drinfeld-Sokolov hierarchies
- Spectral determinants for Schrödinger equation and \({\mathbb{Q}}\)-operators of conformal field theory
- Local conserved charges in principal chiral models
This page was built for publication: Affine Gaudin models and hypergeometric functions on affine opers