A strong maximum principle for globally hypoelliptic operators
From MaRDI portal
Publication:2422583
DOI10.1007/s12215-018-0351-0zbMath1418.35183OpenAlexW2807873454MaRDI QIDQ2422583
Publication date: 20 June 2019
Published in: Rendiconti del Circolo Matemàtico di Palermo. Serie II (Search for Journal in Brave)
Full work available at URL: https://tsukuba.repo.nii.ac.jp/?action=repository_uri&item_id=49387
Degenerate parabolic equations (35K65) Degenerate elliptic equations (35J70) Hypoelliptic equations (35H10)
Related Items (3)
Spectral analysis of hypoelliptic Višik-Ventcel' boundary value problems ⋮ Feller semigroups and degenerate elliptic operators III ⋮ Unnamed Item
Cites Work
- Remarks on the maximum principle for parabolic equations and its applications
- An example of a globally hypoelliptic operator
- The analysis of linear partial differential operators. III: Pseudo-differential operators
- A class of globally hypoelliptic operators on the torus
- A class of hypoelliptic pseudodifferential operators with double characteristics
- Elliptic partial differential equations of second order
- Semigroups and boundary value problems
- Pseudo-differential operators and non-elliptic boundary problems
- Hypoelliptic second order differential equations
- Principe du maximum, inégalité de Harnack et unicité du problème de Cauchy pour les opérateurs elliptiques dégénérées
- Semi-groupes de Feller sur une variété à bord compacte et problèmes aux limites intégro-différentiels du second ordre donnant lieu au principe du maximum
- A strong maximum principle for degenerate elliptic operators
- On degenerate elliptic-parabolic operators of second order and their associated diffusions
- Semigroups, Boundary Value Problems and Markov Processes
- A strong maximum principle for parabolic equations
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
This page was built for publication: A strong maximum principle for globally hypoelliptic operators