On the affine Gauss maps of submanifolds of Euclidean space
From MaRDI portal
Publication:2423444
DOI10.1007/s00574-018-0096-6zbMath1416.53006arXiv1507.03784OpenAlexW2963704527WikidataQ129623566 ScholiaQ129623566MaRDI QIDQ2423444
Publication date: 20 June 2019
Published in: Bulletin of the Brazilian Mathematical Society. New Series (Search for Journal in Brave)
Full work available at URL: https://arxiv.org/abs/1507.03784
Lagrangian submanifoldsymplectic structureGauss mapsspace of oriented linesgeneralized Gauss-Bonnet formulasubmanifolds in Euclidean \(n\)-space
Higher-dimensional and -codimensional surfaces in Euclidean and related (n)-spaces (53A07) Local submanifolds (53B25)
Related Items
Cites Work
- Unnamed Item
- Unnamed Item
- The Gauss map of surfaces in \(\mathbb R^ n\)
- The Gauss map for surfaces in 4-space
- The Gauss Map of Surfaces in R3 and R4
- The Gauss Map for Surfaces: Part 1. The Affine Case
- The Gauss Map for Surfaces: Part 2. The Euclidean Case
- THE GAUSS MAP OF SPACE-LIKE SURFACES IN Rp2+p
- Spaces of geodesics of pseudo-Riemannian space forms and normal congruences of hypersurfaces
- Generalised Surfaces in R<sup>3</sup>