Lipschitz-Killing curvatures and polar images
DOI10.1515/advgeom-2018-0019zbMath1504.14099arXiv1512.02780OpenAlexW2964067672WikidataQ129487089 ScholiaQ129487089MaRDI QIDQ2424553
Publication date: 25 June 2019
Published in: Advances in Geometry (Search for Journal in Brave)
Full work available at URL: https://arxiv.org/abs/1512.02780
generic projectionsfold pointspolar varietiesLipschitz-Killing curvaturesstratified Morse theoryo-minimal setspolar images
Singularities in algebraic geometry (14B05) Real-analytic and semi-analytic sets (14P15) Integral geometry (53C65) Stratifications; constructible sheaves; intersection cohomology (complex-analytic aspects) (32S60) Semi-analytic sets, subanalytic sets, and generalizations (32B20) Critical points of functions and mappings on manifolds (58K05)
Related Items (1)
Cites Work
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- A geometric proof of the existence of definable Whitney stratifications
- Verdier and strict Thom stratifications in o-minimal structures
- Variétés polaires locales et classes de Chern des variétés singulieres
- On stratified Morse theory
- A formula for the Euler characteristic of a real algebraic manifold
- Intrinsic curvatures in analytic-geometric categories
- Integral geometry of tame sets
- Geometric categories and o-minimal structures
- Generic projections
- Équisingularité réelle : nombres de Lelong et images polaires
- Équisingularité réelle II : invariants locaux et conditions de régularité
- Topological Properties of Subanalytic Sets
- Curvature Measures of Subanalytic Sets
- Whitney stratifications and the continuity of local Lipschitz–Killing curvatures
- Polar Varieties and Integral Geometry
- Lipschitz–Killing Invariants
- Stratified critical points on the real Milnor fibre and integral-geometric formulas
- Volume, Whitney conditions and Lelong number
- The (φ, k) Rectifiable Subsets of n Space
This page was built for publication: Lipschitz-Killing curvatures and polar images