Numerical Campedelli surfaces with fundamental group of order 9
From MaRDI portal
Publication:2425588
DOI10.4171/JEMS/118zbMath1140.14037arXivmath/0602633MaRDI QIDQ2425588
Margarida Mendes Lopes, Rita Pardini
Publication date: 6 May 2008
Published in: Journal of the European Mathematical Society (JEMS) (Search for Journal in Brave)
Full work available at URL: https://arxiv.org/abs/math/0602633
Related Items
A twisted bicanonical system with base points ⋮ A characterization of Burniat surfaces with \(K^2=4\) and of non nodal type ⋮ Mixed quasi-étale surfaces, new surfaces of general type with \(p_g=0\) and their fundamental group ⋮ A smoothness test for higher codimensions ⋮ Stabilizing all Kähler moduli in type IIB orientifolds ⋮ Burniat-type surfaces and a new family of surfaces with \(p_g=0,K^2=3\) ⋮ Involutions on numerical Campedelli surfaces ⋮ Campedelli surfaces with fundamental group of order 8 ⋮ A construction of numerical Campedelli surfaces with torsion ℤ/6 ⋮ Surfaces of general type with geometric genus zero: a survey ⋮ A complex surface of general type with 𝑝_{𝑔}=0, 𝐾²=2 and 𝐻₁=ℤ/4ℤ
Cites Work
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Involutions on numerical Campedelli surfaces
- Classification of projective varieties of \(\Delta\)-genus one
- Surfaces fibrées en courbes de genre deux
- On polarized varieties of small Delta-genera
- L'application canonique pour les surfaces de type général
- Algebraic surfaces of general type with \(c_ 1^ 2=3p_ g-6\)
- On the algebraic fundamental group of surfaces with \(K^2\leq 3\chi\)
- On rational surfaces I. Irreducible curves of arithmetic genus $0$ or $1$
- Finitude de l'application bicanonique des surfaces de type général