Renewal theorem for strongly ergodic Markov chains : application to Lipschitz iterative models
From MaRDI portal
Publication:2427229
DOI10.1016/j.crma.2008.02.010zbMath1145.60045OpenAlexW2004724704MaRDI QIDQ2427229
Publication date: 8 May 2008
Published in: Comptes Rendus. Mathématique. Académie des Sciences, Paris (Search for Journal in Brave)
Full work available at URL: https://doi.org/10.1016/j.crma.2008.02.010
Fourier transformrandom walkergodic Markov chainrenewal theoremperturbation operatorinvariant probabilityLipschitz iterative models
Central limit and other weak theorems (60F05) Discrete-time Markov processes on general state spaces (60J05) Renewal theory (60K05)
Related Items (3)
Multidimensional renewal theory in the non-centered case: application to strongly ergodic Markov chains ⋮ A renewal theorem for strongly ergodic Markov chains in dimension \(d \geq 3\) and centered case ⋮ The Nagaev-Guivarc’h method via the Keller-Liverani theorem
Cites Work
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- A renewal theorem for strongly ergodic Markov chains in dimension \(d \geq 3\) and centered case
- Théorèmes limites pour une classe de chaînes de Markov et applications aux difféomorphismes d'Anosov. (Limit theorems for a class of Markov chains and applications to Anosov diffeomorphisms)
- Renewal theory for functionals of a Markov chain with general state space
- On the Markov renewal theorem
- Local theorem for Markov chains with quasicompact transition probability. Applications to \(V\)-geometrically ergodic chains and iterative models
- Théorie du renouvellement pour des chaînes semi-markoviennes transientes. (Renewal theory for transient semi-Markov chains)
- Central limit theorems for iterated random Lipschitz mappings.
- Sur un Theoreme Spectral et son Application aux Noyaux Lipchitziens
- Limit theorems for Markov chains and stochastic properties of dynamical systems by quasi-compactness
This page was built for publication: Renewal theorem for strongly ergodic Markov chains : application to Lipschitz iterative models