Relative fixed point theory
From MaRDI portal
Publication:2431278
DOI10.2140/agt.2011.11.839zbMath1218.55001arXiv0906.0762OpenAlexW3106122217MaRDI QIDQ2431278
Publication date: 12 April 2011
Published in: Algebraic \& Geometric Topology (Search for Journal in Brave)
Full work available at URL: https://arxiv.org/abs/0906.0762
Lua error in Module:PublicationMSCList at line 37: attempt to index local 'msc_result' (a nil value).
Related Items (8)
Shadows and traces in bicategories ⋮ Isovariant homotopy theory and fixed point invariants ⋮ Traces in symmetric monoidal categories ⋮ The homotopy coincidence index ⋮ Colored Jones polynomials and abelianized Lefschetz numbers ⋮ Monoidal Categories, 2-Traces, and Cyclic Cohomology ⋮ Fixed-orbit indices. I ⋮ The linearity of fixed point invariants
Cites Work
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Shadows and traces in bicategories
- Equivariant Nielsen fixed point theory
- A relative Nielsen number
- On fixed points of stratified maps
- Equivariant stable homotopy theory. With contributions by J. E. McClure
- Transformation groups
- On the location of fixed points on pairs of spaces
- Local fixed point index theory for non simply connected manifolds
- Transformation groups and algebraic \(K\)-theory
- The fixed point transfer of fiber-preserving maps
- A relative generalized Lefschetz number
- Lectures on algebraic topology.
- A modification of the relative Nielsen number of H. Schirmer
- Homotopical intersection theory. II: Equivariance
- Homotopical intersection theory. I
- Centerless groups -- an algebraic formulation of Gottlieb's theorem
- Automorphismen von Homotopiekettenringen
- Fixpunktklassen. 2. Homotopieinvarianten der Fixpunkttheorie
- Fixed point theory and trace for bicategories
- Lectures on Nielsen fixed point theory
- Generalized Lefschetz Numbers
- Minimal fixed point sets of relative maps
- Note on Cofibrations.
- On minimal fixed point numbers of relative maps
This page was built for publication: Relative fixed point theory