The density of linear symplectic cocycles with simple Lyapunov spectrum in \({\mathcal G}_{IC}(X, \mathrm{SL}(2,\mathbb R))\)
From MaRDI portal
Publication:2431919
DOI10.1007/S10114-005-0571-ZzbMath1122.37040OpenAlexW2012565591MaRDI QIDQ2431919
Publication date: 24 October 2006
Published in: Acta Mathematica Sinica. English Series (Search for Journal in Brave)
Full work available at URL: https://doi.org/10.1007/s10114-005-0571-z
Random dynamical systems aspects of multiplicative ergodic theory, Lyapunov exponents (37H15) Nonuniformly hyperbolic systems (Lyapunov exponents, Pesin theory, etc.) (37D25) Algebraic ergodic theory, cocycles, orbit equivalence, ergodic equivalence relations (37A20)
Related Items (1)
Cites Work
- Unnamed Item
- Une méthode pour minorer les exposants de Lyapounov et quelques exemples montrant le caractère local d'un théorème d'Arnold et de Moser sur le tore de dimension 2
- Invariant families of cones and Lyapunov exponents
- Positive Lyapunov exponents for a dense set of bounded measurable SL(2, ℝ)-cocycles
- Linear cocycles with simple Lyapunov spectrum are dense in $L^\infty$
This page was built for publication: The density of linear symplectic cocycles with simple Lyapunov spectrum in \({\mathcal G}_{IC}(X, \mathrm{SL}(2,\mathbb R))\)