A truncated estimation method with guaranteed accuracy
DOI10.1007/s10463-013-0409-xzbMath1281.62209OpenAlexW2023848882MaRDI QIDQ2434139
Publication date: 17 February 2014
Published in: Annals of the Institute of Statistical Mathematics (Search for Journal in Brave)
Full work available at URL: https://doi.org/10.1007/s10463-013-0409-x
ratio estimationfixed sample sizemultivariate autoregressionAR-ARCH modelsnon-Gaussian Ornstein-Uhlenbeck processnonparametric multivariate logarithmic density derivative estimation
Asymptotic properties of parametric estimators (62F12) Nonparametric regression and quantile regression (62G08) Density estimation (62G07) Estimation in multivariate analysis (62H12) Time series, auto-correlation, regression, etc. in statistics (GARCH) (62M10) Markov processes: estimation; hidden Markov models (62M05)
Related Items (5)
Cites Work
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- On parameter estimation of partly observed bilinear discrete-time stochastic systems
- On guaranteed parameter estimation of a multiparameter linear regression process
- Sequential parameter estimation for dynamical systems in the presence of multiplicative and additive noises in the observations
- Distribution function inequalities for martingales
- Sequential parameter estimation with guaranteed mean-square accuracy for unstable linear stochastic systems
- Nonlinear system identification via direct weight optimization
- On sequential estimation of parameters in semimartingale regression models with continuous time parameter.
- Estimating the generalized autoregression model parameters for unknown noise distribution
- Truncated sequential estimation of the parameter of a first order autoregressive process with dependent noises
- Non-Parametric Sequential Estimation of a Regression Function Based on Dependent Observations
- Sequential robust estimation for nonparametric autoregressive models
- Sequential Adaptive Estimators in Nonparametric Autoregressive Models
- OPTIMALITY OF THE MAXIMUM LIKELIHOOD ESTIMATOR IN FIRST-ORDER AUTOREGRESSIVE PROCESSES
- Sequential Design and Estimation in Heteroscedastic Nonparametric Regression
- Truncated sequential estimation of the parameters in a random regression
- On Truncatd sequential estimation of the drifting parametermean in the first order autoregressive models
- On the Distribution of the Ratioof Sums of Random Variables
- Statistical Experiments and Decisions
- Nonparametric Identification of Autoregressions
This page was built for publication: A truncated estimation method with guaranteed accuracy