On the limit \(p\to\infty\) of global minimizers for a \(p\)-Ginzburg-Landau-type energy
From MaRDI portal
Publication:2446372
DOI10.1016/j.anihpc.2012.12.013zbMath1288.35441OpenAlexW1987157782MaRDI QIDQ2446372
Dmitry Golovaty, Yaniv Almog, Leonid Berlyand, Itai Shafrir
Publication date: 16 April 2014
Published in: Annales de l'Institut Henri Poincaré. Analyse Non Linéaire (Search for Journal in Brave)
Full work available at URL: https://doi.org/10.1016/j.anihpc.2012.12.013
Optimality conditions for problems involving partial differential equations (49K20) Ginzburg-Landau equations (35Q56) Integro-partial differential equations (35R09)
Cites Work
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Radially symmetric minimizers for a \(p\)-Ginzburg-Landau type energy in \({\mathbb R^2}\)
- Global minimizers for a \(p\)-Ginzburg-Landau-type energy in \(\mathbb R^2\)
- Functional analysis, Sobolev spaces and partial differential equations
- Elliptic partial differential equations of second order
- Locally minimising solutions of − Δu = u(1 − |u|2) in R2
This page was built for publication: On the limit \(p\to\infty\) of global minimizers for a \(p\)-Ginzburg-Landau-type energy