\(\mathcal T_C\)-Gorenstein projective, \(\mathcal L_C\)-Gorenstein injective and \(\mathcal H_C\)-Gorenstein flat modules
DOI10.1007/S11401-013-0811-YzbMath1291.13023OpenAlexW2323442762WikidataQ114222479 ScholiaQ114222479MaRDI QIDQ2448464
Xiaoguang Yan, Xiaosheng Zhu, Zhen Zhang
Publication date: 30 April 2014
Published in: Chinese Annals of Mathematics. Series B (Search for Journal in Brave)
Full work available at URL: https://doi.org/10.1007/s11401-013-0811-y
Bass classsemidualizing moduleAuslander classprecoverpreenvelopeFoxby equivalence\({\mathbf H}_{C}\)-flat module\({\mathbf L}_{C}\)-Gorenstein injective module\({\mathbf T}_{C}\)-Gorenstein projective module
Injective modules, self-injective associative rings (16D50) Free, projective, and flat modules and ideals in associative algebras (16D40) Homological dimension and commutative rings (13D05) Syzygies, resolutions, complexes and commutative rings (13D02) Homological functors on modules of commutative rings (Tor, Ext, etc.) (13D07)
Related Items (2)
Cites Work
- Unnamed Item
- Unnamed Item
- Gorenstein projective dimension with respect to a semidualizing module
- Tate cohomology with respect to semidualizing modules
- Foxby equivalence over associative rings.
- Gorenstein homological dimensions.
- Gorenstein dimensions
- Gorenstein Modules and Related Modules.
- Foxby duality and Gorenstein injective and projective modules
- Homological aspects of semidualizing modules
- Stability of Gorenstein categories
This page was built for publication: \(\mathcal T_C\)-Gorenstein projective, \(\mathcal L_C\)-Gorenstein injective and \(\mathcal H_C\)-Gorenstein flat modules