Zeta functions of regular arithmetic schemes at \(s=0\)
From MaRDI portal
Publication:2454273
DOI10.1215/00127094-2681387zbMath1408.14076arXiv1103.6061OpenAlexW3101145315MaRDI QIDQ2454273
Publication date: 13 June 2014
Published in: Duke Mathematical Journal (Search for Journal in Brave)
Full work available at URL: https://arxiv.org/abs/1103.6061
Étale and other Grothendieck topologies and (co)homologies (14F20) (L)-functions of varieties over global fields; Birch-Swinnerton-Dyer conjecture (11G40) Motivic cohomology; motivic homotopy theory (14F42)
Related Items (5)
Arakelov motivic cohomology I ⋮ Tori over number fields and special values at \(s = 1\) ⋮ Étale cohomology of arithmetic schemes and zeta values of arithmetic surfaces ⋮ Weil-étale cohomology and zeta-values of proper regular arithmetic schemes ⋮ Special values of \(L\)-functions on regular arithmetic schemes of dimension 1
Cites Work
- On the Weil-étale topos of regular arithmetic schemes
- Duality via cycle complexes
- The Weil-étale fundamental group of a number field. II
- On motivic cohomology with \(\mathbb{Z}/l\)-coefficients
- Motivic cohomology over Dedekind rings
- Weil-étale cohomology over finite fields
- The Weil-étale topology for number rings
- Semi-purity of tempered Deligne cohomology
- Class field theory for arithmetic schemes
- Perfecting the nearly perfect
- Groupes de Chow et K-théorie de variétés sur un corps fini
- K-théorie des anneaux d'entiers de corps de nombres et cohomologie etale
- La conjecture de Weil. I
- The \(K\)-theory of fields in characteristic \(p\)
- On motivic decompositions arising from the method of Białynicki-Birula
- A new method in fixed point theory
- Seminar of algebraic geometry du Bois-Marie 1963--1964. Topos theory and étale cohomology of schemes (SGA 4). Vol. 1: Topos theory. Exp. I--IV
- On Goncharov’s Regulator and Higher Arithmetic Chow Groups
- On the Weil-étale cohomology of number fields
- Polylogarithms, regulators, and Arakelov motivic complexes
- Cohomology of topological groups with applications to the Weil group
- Weyl's Lemma, one of many
- Values of zeta-functions at non-negative integers
- Stable real cohomology of arithmetic groups
- The projectivity of the moduli space of stable curves. I: Preliminaries on "det" and "Div".
- On Galois structure invariants associated to Tate motives
- Équivalences rationnelle et numérique sur certaines variétés de type abélien sur un corps fini
- The Bloch-Kato conjecture and a theorem of Suslin-Voevodsky
- The Weil-étale topology on schemes over finite fields
- Two-primary algebraic 𝐾-theory of rings of integers in number fields
- Les nombres de Tamagawa locaux et la conjecture de Bloch et Kato pour les motifs sur un corps abélien
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
This page was built for publication: Zeta functions of regular arithmetic schemes at \(s=0\)