Embedding subsets of tori properly into \(\mathbb C^2\)
From MaRDI portal
Publication:2461179
DOI10.5802/aif.2305zbMath1149.32015arXivmath/0602443OpenAlexW2942980551MaRDI QIDQ2461179
Publication date: 27 November 2007
Published in: Annales de l'Institut Fourier (Search for Journal in Brave)
Full work available at URL: https://arxiv.org/abs/math/0602443
Proper holomorphic mappings, finiteness theorems (32H35) Algebras of holomorphic functions of several complex variables (32A38) Embedding theorems for complex manifolds (32Q40)
Related Items (6)
On the Density and the Volume Density Property ⋮ The first thirty years of Andersén-Lempert theory ⋮ Embedding Riemann surfaces with isolated punctures into the complex plane ⋮ Embedding certain infinitely connected subsets of bordered Riemann surfaces properly into \(\mathbb C^{2}\) ⋮ Bordered Riemann surfaces in \(\mathbb C^2\) ⋮ Embedding some Riemann surfaces into \({\mathbb {C}^2}\) with interpolation
Cites Work
- Existence et approximation des solutions des équations aux dérivées partielles et des équations de convolution
- Embeddings of Stein manifolds of dimension \(n\) into the affine space of dimension \(3n/2+1\)
- Explicit imbedding of the (punctured) disc into \(\mathbb{C}^2\)
- Embeddings of Stein spaces into affine spaces of minimal dimension
- Embedding some bordered Riemann surfaces in the affine plane
- Imbedding annuli in C\(^2\)
- Holomorphic embeddings of planar domains in \(\mathbb{C}^ 2\)
- Fixed points, Koebe uniformization and circle packings
- Uniform approximation on smooth curves
- Plongements des variétés de Stein
- Proper holomorphic embeddings of finitely and some infinitely connected subsets of \(\mathbb C\) into \(\mathbb C^2\)
- Entwicklung analytischer Funktionen auf Riemannschen Flächen
- EMBEDDING RIEMANN SURFACES PROPERLY INTO ℂ2
- Global holomorphic equivalence of smooth submanifolds in C^n
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
This page was built for publication: Embedding subsets of tori properly into \(\mathbb C^2\)