A minimal set of generators for the ring of multisymmetric functions
From MaRDI portal
Publication:2466298
DOI10.5802/aif.2312zbMath1130.13005arXiv0710.0470OpenAlexW3122881092MaRDI QIDQ2466298
Publication date: 14 January 2008
Published in: Annales de l'Institut Fourier (Search for Journal in Brave)
Full work available at URL: https://arxiv.org/abs/0710.0470
Symmetric functions and generalizations (05E05) Group actions on varieties or schemes (quotients) (14L30) Parametrization (Chow and Hilbert schemes) (14C05) Actions of groups on commutative rings; invariant theory (13A50)
Related Items
On some modules supported in the Chow variety ⋮ Separating invariants over finite fields ⋮ Suzuki functor at the critical level ⋮ Symmetric polynomials over finite fields ⋮ Separating invariants for multisymmetric polynomials ⋮ Cubature Formulas for Multisymmetric Functions and Applications to Stochastic Partial Differential Equations ⋮ Applications of Multisymmetric Syzygies in Invariant Theory ⋮ A minimal set of generators for the ring of multisymmetric functions ⋮ On the local quotient structure of Artin stacks ⋮ Bigraded cohomology of \(\mathbb{Z}/2\)-equivariant Grassmannians
Cites Work
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Counterexamples regarding symmetric tensors and divided powers
- Generators for the divided powers algebra of an algebra and trace identities
- Zero cycles in \(\mathbb{P}^n\)
- Explicit generators of the invariants of finite groups
- The ring of multisymmetric functions.
- When is the algebra of multisymmetric polynomials generated by the elementary multisymmetric polynomials?
- A minimal set of generators for the ring of multisymmetric functions
- Éléments de géométrie algébrique. IV: Étude locale des schémas et des morphismes de schémas. (Séconde partie)
- On the normality of the Chow variety of positive $0$-cycles of degree $m$ in an algebrac variety
- Vector Invariants of Symmetric Groups
- Un foncteur norme
- A new degree bound for vector invariants of symmetric groups
- Cohomologie a supports propres
- Lois polynomes et lois formelles en théorie des modules