Large time dynamics of a classical system subject to a fast varying force
DOI10.1007/s00220-007-0339-7zbMath1127.37052OpenAlexW2060991299MaRDI QIDQ2466827
Pierre Degond, Francois Castella, Thierry Goudon
Publication date: 16 January 2008
Published in: Communications in Mathematical Physics (Search for Journal in Brave)
Full work available at URL: https://doi.org/10.1007/s00220-007-0339-7
kinetic equationasymptotic behavior of solutionsevolution of particlesatomic Bloch equationstime-oscillatory perturbation
Asymptotic behavior of solutions to PDEs (35B40) Nonlinear first-order PDEs (35F20) Dynamical systems in other branches of physics (quantum mechanics, general relativity, laser physics) (37N20) Applications of quantum theory to specific physical systems (81V99) Classical dynamic and nonequilibrium statistical mechanics (general) (82C05) Infinite-dimensional dissipative dynamical systems (37L99)
Related Items (3)
Cites Work
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- The quantum scattering limit for a regularized Wigner equation
- Diffusion dynamics of classical systems driven by an oscillatory force
- Homogenization of transport equations: a simple PDE approach to the Kubo formula
- Transport equations for elastic and other waves in random media
- Diffusion approximation for billiards with totally accommodating scatterers
- The mathematical theory of dilute gases
- Classical and quantum transport in random media.
- From the von Neumann equation to the quantum Boltzmann equation. II: Identifying the Born series
- From Bloch model to the rate equations
- APPROXIMATION BY HOMOGENIZATION AND DIFFUSION OF KINETIC EQUATIONS
- Homogenization and Two-Scale Convergence
- A General Convergence Result for a Functional Related to the Theory of Homogenization
- Asymptotic behaviour of transport equations
- Linear Boltzmann equation as the weak coupling limit of a random Schrödinger equation
- Radiative transport limit for the random Schrödinger equation
- Homogenization of Transport Equations: Weak Mean Field Approximation
- FROM BLOCH MODEL TO THE RATE EQUATIONS II: THE CASE OF ALMOST DEGENERATE ENERGY LEVELS
- Homogenisation of transport kinetic equations with oscillating potentials
- Averaging methods in nonlinear dynamical systems
- From the von Neumann equation to the quantum Boltzmann equation in a deterministic framework.
This page was built for publication: Large time dynamics of a classical system subject to a fast varying force