Measures on double or resonant eigenvalues for linear Schrödinger operator
From MaRDI portal
Publication:2476491
DOI10.1016/j.jfa.2007.11.009zbMath1146.35062OpenAlexW2010571592MaRDI QIDQ2476491
Benoît Desjardins, Emmanuel Grenier, Bresch, Didier
Publication date: 20 March 2008
Published in: Journal of Functional Analysis (Search for Journal in Brave)
Full work available at URL: https://doi.org/10.1016/j.jfa.2007.11.009
General topics in linear spectral theory for PDEs (35P05) Estimates of eigenvalues in context of PDEs (35P15) Schrödinger operator, Schrödinger equation (35J10)
Cites Work
- Eigenvalues variation. I: Neumann problem for Sturm--Liouville operators
- Unique continuation and absence of positive eigenvalues for Schrödinger operators. (With an appendix by E. M. Stein)
- Multiplicities of the eigenvalues of the Schrödinger equation in any dimension
- Perturbation theory for eigenvalues and resonances of Schrödinger hamiltonians
- Semi-classical analysis for the Schrödinger operator and applications
- Forme normale pour NLS en dimension quelconque. (Normal form for NLS in arbitrary dimension)
- A Landau-Zener formula for non-degenerated involutive codimension 3 crossings
- Mesures semi-classiques et croisement de modes
- Résonances en limite semi-classique
- Generic Properties of Eigenfunctions
This page was built for publication: Measures on double or resonant eigenvalues for linear Schrödinger operator