Stochastic bifurcation in FitzHugh-Nagumo ensembles subjected to additive and/or multiplicative noises
DOI10.1016/J.PHYSD.2007.08.009zbMath1151.34047arXivcond-mat/0610028OpenAlexW2031269902MaRDI QIDQ2477686
Publication date: 14 March 2008
Published in: Physica D (Search for Journal in Brave)
Full work available at URL: https://arxiv.org/abs/cond-mat/0610028
Stochastic ordinary differential equations (aspects of stochastic analysis) (60H10) Bifurcation theory for ordinary differential equations (34C23) Ordinary differential equations and systems with randomness (34F05) Asymptotic properties of solutions to ordinary differential equations (34D05) Bifurcation theory for random and stochastic dynamical systems (37H20)
Related Items (12)
Cites Work
- Advanced synergetics. Instability hierarchies of self-organizing systems and devices
- Stochastic resonance in neuron models
- Analytical and simulation results for stochastic Fitzhugh-Nagumo neurons and neural networks
- Noise-induced transition in excitable neuron models
- Fluctuation Dissipation Relation for a Langevin Model with Multiplicative Noise
- Multiplicative noise: A mechanism leading to nonextensive statistical mechanics
- On the statistical theory of electromagnetic waves in a fluctuating medium (I)
- Stochastic bifurcation
This page was built for publication: Stochastic bifurcation in FitzHugh-Nagumo ensembles subjected to additive and/or multiplicative noises