An index theorem for Wiener-Hopf operators
From MaRDI portal
Publication:2482056
DOI10.1016/j.aim.2007.11.024zbMath1141.47044arXivmath/0611198OpenAlexW1977011926MaRDI QIDQ2482056
Alexander Alldridge, Troels Rousseau Johansen
Publication date: 16 April 2008
Published in: Advances in Mathematics (Search for Journal in Brave)
Full work available at URL: https://arxiv.org/abs/math/0611198
(K)-theory and operator algebras (including cyclic theory) (46L80) Toeplitz operators, Hankel operators, Wiener-Hopf operators (47B35) (Semi-) Fredholm operators; index theories (47A53) Index theory (19K56) Algebras of specific types of operators (Toeplitz, integral, pseudodifferential, etc.) (47L80)
Related Items
Analysis on singular spaces: Lie manifolds and operator algebras ⋮ On the Wiener-Hopf compactification of a symmetric cone ⋮ Layer potentials \(C^*\)-algebras of domains with conical points ⋮ A topological index theorem for manifolds with corners ⋮ Spectrum and analytical indices of the \(C^{*}\)-algebra of Wiener--Hopf operators
Cites Work
- Reguläre Kegel
- Continuous selections. I
- Manifolds with transverse fields in euclidean space
- Spectrum and analytical indices of the \(C^{*}\)-algebra of Wiener--Hopf operators
- The longitudinal index theorem for foliations
- A groupoid approach to C*-algebras
- Equivariant Kasparov theory and groupoids. I
- Continuous family groupoids
- Pseudodifferential analysis on continuous family groupoids
- Non-Hausdorff groupoids, proper actions and \(K\)-theory
- Smoothing a topological manifold
- Geometry of homogeneous convex cones, duality mapping, and optimal self-concordant barriers
- Wiener-Hopf operators on ordered homogeneous spaces. I
- The construction of homogeneous convex cones
- The index of elliptic operators. I
- The index of elliptic operators. IV, V
- Twisted K-theory of differentiable stacks
- Groupoid cohomology and extensions
- Index theory for multivariable Wiener-Hopf operators.
- Morphismes $K$-orientés d'espaces de feuilles et fonctorialité en théorie de Kasparov (d'après une conjecture d'A. Connes)
- C ∗ -Algebras of Multivariable Wiener-Hopf Operators
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item