Invariant measures for the stable foliation on negatively curved periodic manifolds
DOI10.5802/aif.2345zbMath1149.37022OpenAlexW2463627690MaRDI QIDQ2482855
Publication date: 24 April 2008
Published in: Annales de l'Institut Fourier (Search for Journal in Brave)
Full work available at URL: http://www.numdam.org/item?id=AIF_2008__58_1_85_0
ergodicityhorospheresnegative curvatureBusemann functionsalpha-conformal measureleaf Laplacianreversible and harmonic measuresstable and strong stable Anosov foliations
Foliations (differential geometric aspects) (53C12) Dynamical systems of geometric origin and hyperbolicity (geodesic and horocycle flows, etc.) (37D40) Nonsingular (and infinite-measure preserving) transformations (37A40)
Related Items (max. 100)
Cites Work
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Foliations, the ergodic theorem and Brownian motion
- Brownian motion on foliations: Entropy, invariant measures, mixing
- Sur les groupes hyperboliques d'après Mikhael Gromov. (On the hyperbolic groups à la M. Gromov)
- Unique ergodicity for horocycle foliations
- Harmonic measures for compact negatively curved manifolds
- Invariant Radon measures for horocycle flows on Abelian covers
- Sur la géométrie symplectique de l'espace des géodésiques d'une variété à courbure négative. (On the symplectic geometry of the space of geodesics of a manifold with negative curvature)
- A Fatou theorem for conformal densities with applications to Galois coverings in negative curvature
- Horofunctions and symbolic dynamics on Gromov hyperbolic groups
- Remarques sur le spectre des longueurs d'une surface et comptages
- Ergodic properties of Gibbs measures on nilpotent covers
- Ergodicité et équidistribution en courbure négative
- Invariant measures for the horocycle flow on periodic hyperbolic surfaces
This page was built for publication: Invariant measures for the stable foliation on negatively curved periodic manifolds